# -*- coding:utf8 -*- import argparse import os import ast import numpy as np import paddle.fluid as fluid import paddlehub as hub from paddlehub.reader.cv_reader import ObjectDetectionReader from paddlehub.dataset.base_cv_dataset import ObjectDetectionDataset # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning.") parser.add_argument("--checkpoint_dir", type=str, default="ssd_finetune_ckpt", help="Path to save log data.") parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.") parser.add_argument("--module", type=str, default="ssd_vgg16_512_coco2017", help="Module used as feature extractor.") parser.add_argument("--dataset", type=str, default="coco_10", help="Dataset to finetune.") # yapf: enable. def predict(args): module = hub.Module(name=args.module) dataset = hub.dataset.Coco10('ssd') print("dataset.num_labels:", dataset.num_labels) # define batch reader data_reader = ObjectDetectionReader(dataset=dataset, model_type='ssd') input_dict, output_dict, program = module.context(trainable=True) feed_list = [input_dict["image"].name, input_dict["im_size"].name] feature = output_dict['body_features'] config = hub.RunConfig( use_data_parallel=False, use_pyreader=True, use_cuda=args.use_gpu, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) task = hub.SSDTask( data_reader=data_reader, num_classes=dataset.num_labels, feed_list=feed_list, feature=feature, multi_box_head_config=module.multi_box_head_config, config=config) data = [ "./test/test_img_bird.jpg", "./test/test_img_cat.jpg", ] label_map = dataset.label_dict() results = task.predict(data=data, return_result=True, accelerate_mode=False) print(results) if __name__ == "__main__": args = parser.parse_args() predict(args)