# coding:utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Callable import paddle from paddlehub.env import DATA_HOME from pycocotools.coco import COCO from paddlehub.process.transforms import DetectCatagory, ParseImages class DetectionData(paddle.io.Dataset): """ Dataset for image detection. Args: transform(callmethod) : The method of preprocess images. mode(str): The mode for preparing dataset. Returns: DataSet: An iterable object for data iterating """ def __init__(self, transform: Callable, size: int = 416, mode: str = 'train'): self.mode = mode self.transform = transform self.size = size if self.mode == 'train': train_file_list = 'annotations/instances_train2017.json' train_data_dir = 'train2017' self.train_file_list = os.path.join(DATA_HOME, 'voc', train_file_list) self.train_data_dir = os.path.join(DATA_HOME, 'voc', train_data_dir) self.COCO = COCO(self.train_file_list) self.img_dir = self.train_data_dir elif self.mode == 'test': val_file_list = 'annotations/instances_val2017.json' val_data_dir = 'val2017' self.val_file_list = os.path.join(DATA_HOME, 'voc', val_file_list) self.val_data_dir = os.path.join(DATA_HOME, 'voc', val_data_dir) self.COCO = COCO(self.val_file_list) self.img_dir = self.val_data_dir parse_dataset_catagory = DetectCatagory(self.COCO, self.img_dir) self.label_names, self.label_ids, self.category_to_id_map = parse_dataset_catagory() parse_images = ParseImages(self.COCO, self.mode, self.img_dir, self.category_to_id_map) self.data = parse_images() def __getitem__(self, idx: int): if self.mode == "train": img = self.data[idx] out_img, gt_boxes, gt_labels, gt_scores = self.transform(img, 416) return out_img, gt_boxes, gt_labels, gt_scores elif self.mode == "test": img = self.data[idx] out_img, id, (h, w) = self.transform(img) return out_img, id, (h, w) def __len__(self): return len(self.data)