#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning on sequence labeling task.""" import argparse import ast import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--warmup_proportion", type=float, default=0.1, help="Warmup proportion params for warmup strategy") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub ERNIE Tiny pretrained model module = hub.Module(name="ernie_tiny") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and use SequenceLabelReader to read dataset dataset = hub.dataset.MSRA_NER() reader = hub.reader.SequenceLabelReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len, sp_model_path=module.get_spm_path(), word_dict_path=module.get_word_dict_path()) # Construct transfer learning network # Use "sequence_output" for token-level output. sequence_output = outputs["sequence_output"] # Setup feed list for data feeder # Must feed all the tensor of module need feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name ] # Select a fine-tune strategy strategy = hub.AdamWeightDecayStrategy( warmup_proportion=args.warmup_proportion, weight_decay=args.weight_decay, learning_rate=args.learning_rate) # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=args.use_data_parallel, use_cuda=args.use_gpu, num_epoch=args.num_epoch, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=strategy) # Define a sequence labeling fine-tune task by PaddleHub's API # If add crf, the network use crf as decoder seq_label_task = hub.SequenceLabelTask( data_reader=reader, feature=sequence_output, feed_list=feed_list, max_seq_len=args.max_seq_len, num_classes=dataset.num_labels, config=config, add_crf=False) # Fine-tune and evaluate model by PaddleHub's API # will finish training, evaluation, testing, save model automatically seq_label_task.finetune_and_eval()