#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub import pandas as pd # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub ERNIE 2.0 pretrained model module = hub.Module(name="ernie_v2_eng_base") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and use MultiLabelReader to read dataset dataset = hub.dataset.Toxic() reader = hub.reader.MultiLabelClassifyReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len) # Setup feed list for data feeder feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Construct transfer learning network # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_output" for token-level output. pooled_output = outputs["pooled_output"] # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=False, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) # Define a classfication fine-tune task by PaddleHub's API multi_label_cls_task = hub.MultiLabelClassifierTask( data_reader=reader, feature=pooled_output, feed_list=feed_list, num_classes=dataset.num_labels, config=config) # Data to be predicted data = [ [ "Yes you did. And you admitted to doing it. See the Warren Kinsella talk page." ], [ "I asked you a question. We both know you have my page on your watch list, so are why are you playing games and making me formally ping you? Makin'Bacon" ], ] print(multi_label_cls_task.predict(data=data, return_result=True))