#coding:utf-8 import argparse import os import ast import paddle.fluid as fluid import paddlehub as hub import numpy as np # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for predict.") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.") parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.") parser.add_argument("--module", type=str, default="resnet50", help="Module used as a feature extractor.") parser.add_argument("--dataset", type=str, default="flowers", help="Dataset to fine-tune.") # yapf: enable. module_map = { "resnet50": "resnet_v2_50_imagenet", "resnet101": "resnet_v2_101_imagenet", "resnet152": "resnet_v2_152_imagenet", "mobilenet": "mobilenet_v2_imagenet", "nasnet": "nasnet_imagenet", "pnasnet": "pnasnet_imagenet" } def predict(args): # Load Paddlehub pretrained model module = hub.Module(name=args.module) input_dict, output_dict, program = module.context(trainable=True) # Download dataset if args.dataset.lower() == "flowers": dataset = hub.dataset.Flowers() elif args.dataset.lower() == "dogcat": dataset = hub.dataset.DogCat() elif args.dataset.lower() == "indoor67": dataset = hub.dataset.Indoor67() elif args.dataset.lower() == "food101": dataset = hub.dataset.Food101() elif args.dataset.lower() == "stanforddogs": dataset = hub.dataset.StanfordDogs() else: raise ValueError("%s dataset is not defined" % args.dataset) # Use ImageClassificationReader to read dataset data_reader = hub.reader.ImageClassificationReader( image_width=module.get_expected_image_width(), image_height=module.get_expected_image_height(), images_mean=module.get_pretrained_images_mean(), images_std=module.get_pretrained_images_std(), dataset=dataset) feature_map = output_dict["feature_map"] # Setup feed list for data feeder feed_list = [input_dict["image"].name] # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=False, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) # Define a image classification task by PaddleHub Fine-tune API task = hub.ImageClassifierTask( data_reader=data_reader, feed_list=feed_list, feature=feature_map, num_classes=dataset.num_labels, config=config) data = ["./test/test_img_daisy.jpg", "./test/test_img_roses.jpg"] print(task.predict(data=data, return_result=True)) if __name__ == "__main__": args = parser.parse_args() if not args.module in module_map: hub.logger.error("module should in %s" % module_map.keys()) exit(1) args.module = module_map[args.module] predict(args)