# bert-base-chinese
|模型名称|bert-base-chinese|
| :--- | :---: |
|类别|文本-语义模型|
|网络|bert-base-chinese|
|数据集|百度自建数据集|
|是否支持Fine-tuning|是|
|模型大小|681MB|
|最新更新日期|2021-02-26|
|数据指标|-|
## 一、模型基本信息
- ### 模型介绍
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 2.0.0
- paddlehub >= 2.0.0 | [如何安装PaddleHub](../../../../docs/docs_ch/get_start/installation.rst)
- ### 2、安装
- ```shell
$ hub install bert-base-chinese
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、预测代码示例
```python
import paddlehub as hub
data = [
['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'],
['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'],
['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'],
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-chinese',
version='2.0.2',
task='seq-cls',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
详情可参考PaddleHub示例:
- [文本分类](../../../../demo/text_classification)
- [序列标注](../../../../demo/sequence_labeling)
- ### 2、API
- ```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None,
num_classes=2,
suffix=False,
**kwargs,
)
```
- 创建Module对象(动态图组网版本)
- **参数**
- `task`: 任务名称,可为`seq-cls`(文本分类任务)或`token-cls`(序列标注任务)。
- `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
- `label_map`:预测时的类别映射表。
- `num_classes`:分类任务的类别数,如果指定了`label_map`,此参数可不传,默认2分类。
- `suffix`: 序列标注任务的标签格式,如果设定为`True`,标签以'-B', '-I', '-E' 或者 '-S'为结尾,此参数默认为`False`。
- `**kwargs`:用户额外指定的关键字字典类型的参数。
- ```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False
)
```
- **参数**
- `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
- `max_seq_len`:模型处理文本的最大长度
- `batch_size`:模型批处理大小
- `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
- **返回**
- `results`:list类型,不同任务类型的返回结果如下
- 文本分类:列表里包含每个句子的预测标签,格式为\[label\_1, label\_2, …,\]
- 序列标注:列表里包含每个句子每个token的预测标签,格式为\[\[token\_1, token\_2, …,\], \[token\_1, token\_2, …,\], …,\]
- ```python
def get_embedding(
data,
use_gpu=False
)
```
- 用于获取输入文本的句子粒度特征与字粒度特征
- **参数**
- `data`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
- `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
- **返回**
- `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
## 四、服务部署
- PaddleHub Serving可以部署一个在线获取预训练词向量。
- ### 第一步:启动PaddleHub Serving
- ```shell
$ hub serving start -m bert-base-chinese
```
- 这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
# 指定用于获取embedding的文本[[text_1], [text_2], ... ]}
text = [["今天是个好日子"], ["天气预报说今天要下雨"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"data"
# 对应本地部署,则为module.get_embedding(data=text)
data = {"data": text}
# 发送post请求,content-type类型应指定json方式,url中的ip地址需改为对应机器的ip
url = "http://127.0.0.1:8866/predict/bert-base-chinese"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 五、更新历史
* 1.0.0
初始发布
* 1.0.1
修复python 2的兼容问题
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图版本,接口有所变化
* 2.0.1
任务名称调整,增加序列标注任务`token-cls`
* 2.0.2
增加文本匹配任务`text-matching`
```shell
$ hub install bert-base-chinese==2.0.2
```