import paddle import paddlehub as hub import paddlehub.vision.transforms as T from paddlehub.finetune.trainer import Trainer from paddlehub.datasets import Flowers if __name__ == '__main__': transforms = T.Compose( [T.Resize((256, 256)), T.CenterCrop(224), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])], to_rgb=True) flowers = Flowers(transforms) flowers_validate = Flowers(transforms, mode='val') model = hub.Module( name='resnet50_vd_imagenet_ssld', label_list=["roses", "tulips", "daisy", "sunflowers", "dandelion"], load_checkpoint=None) optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) trainer = Trainer(model, optimizer, checkpoint_dir='img_classification_ckpt', use_gpu=True) trainer.train(flowers, epochs=100, batch_size=32, eval_dataset=flowers_validate, save_interval=10)