# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid import numpy as np import tempfile import os import pickle from collections import defaultdict from paddle_hub.downloader import download_and_uncompress from paddle_hub import module_desc_pb2 from paddle_hub.signature import Signature from paddle_hub.utils import to_list from paddle_hub.version import __version__ __all__ = ["Module", "ModuleConfig", "ModuleUtils"] # paddle hub module dir name ASSETS_DIRNAME = "assets" META_DIRNAME = "meta" MODEL_DIRNAME = "model" # paddle hub module serialze file name DICT_FILENAME = "vocab.txt" PARAM_FILENAME = "param.pkl" MODULE_DESC_PBNAME = "module_desc.pb" GENERATOR_FILENAME = "unique_name_generator.pkl" def mkdir(path): """ the same as the shell command mkdir -p " """ if not os.path.exists(path): os.makedirs(path) class Module(object): """ Core object of PaddleHub """ def __init__(self, module_url=None, module_dir=None): if module_url == None and module_dir == None: raise Exception("Module:module_url and module_dir are None!") self.module_dir = "" self.module_name = "" # donwload module if module_url is not None and module_url.startswith("http"): # if it's remote url link, then download and uncompress it self.module_name, self.module_dir = download_and_uncompress( module_url) #TODO(ZeyuChen): check url link is valid url elif module_dir is not None: # otherwise it's local path, no need to deal with it self.module_dir = module_dir # use the path name as module name by default self.module_name = module_dir.split("/")[-1] #TODO(ZeyuChen) add more check about loading module from local path def _process_parameter(self): global_block = self.inference_program.global_block() param_path = ModuleConfig.meta_param_path(self.module_dir) with open(param_path, "rb") as file: param_arr = pickle.load(file) for param in param_arr: if (param['name'] not in global_block.vars): continue var = global_block.var(param['name']) global_block.create_parameter( **param, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, error_clip=var.error_clip, stop_gradient=var.stop_gradient, is_data=var.is_data) def __call__(self, sign_name="default", trainable=False): """ Call default signature and return results """ def _set_param_trainable(program, trainable=False): for param in program.global_block().iter_parameters(): param.trainable = trainable def _process_op_attr(program, is_test=False): for op in program.global_block().ops: if op.has_attr("is_test"): op._set_attr("is_test", is_test) def _process_input_output_key(module_desc, signature): signature = module_desc.sign2var[signature] feed_dict = {} fetch_dict = {} for index, feed in enumerate(signature.feed_desc): if feed.alias != "": feed_dict[feed.alias] = feed.var_name feed_dict[index] = feed.var_name for index, fetch in enumerate(signature.fetch_desc): if fetch.alias != "": fetch_dict[fetch.alias] = fetch.var_name fetch_dict[index] = fetch.var_name return feed_dict, fetch_dict self.config = ModuleConfig(self.module_dir) self.config.load() # load paddle inference model place = fluid.CPUPlace() model_dir = os.path.join(self.module_dir, MODEL_DIRNAME) self.exe = fluid.Executor(fluid.CPUPlace()) self.inference_program, self.feed_target_names, self.fetch_targets = fluid.io.load_inference_model( dirname=os.path.join(model_dir, sign_name), executor=self.exe) feed_dict, fetch_dict = _process_input_output_key( self.config.desc, sign_name) # remove feed fetch operator and variable ModuleUtils.remove_feed_fetch_op(self.inference_program) # print("inference_program") # print(self.inference_program) print("**feed_target_names**\n{}".format(self.feed_target_names)) print("**fetch_targets**\n{}".format(self.fetch_targets)) self._process_parameter() name_generator_path = ModuleConfig.name_generator_path(self.module_dir) with open(name_generator_path, "rb") as data: generator = pickle.load(data) program = self.get_inference_program().clone() _process_op_attr(program=program, is_test=False) _set_param_trainable(program=program, trainable=trainable) for key, value in feed_dict.items(): var = program.global_block().var(value) feed_dict[key] = var for key, value in fetch_dict.items(): var = program.global_block().var(value) fetch_dict[key] = var return feed_dict, fetch_dict, program, generator def get_inference_program(self): return self.inference_program # for text sequence input, transform to lod tensor as paddle graph's input def _preprocess_input(self, inputs): # words id mapping and dealing with oov # transform to lod tensor seq = [] for s in inputs: seq.append(self._word_id_mapping(s)) lod_tensor = self.seq2lod_tensor(seq) return lod_tensor def seq2lod_tensor(self, seq_inputs, place=fluid.CPUPlace()): """ sequence to lod tensor, need to determine which space""" lod = [] lod.append([]) for s in seq_inputs: # generate lod lod[0].append(len(s)) # print("seq", seq_inputs) # print("lod", lod) lod_tensor = fluid.create_lod_tensor(seq_inputs, lod, place) return lod_tensor def _word_id_mapping(self, inputs): word_dict = self.config.get_dict() return list(map(lambda x: word_dict[x], inputs)) class ModuleConfig(object): def __init__(self, module_dir, module_name=None): # generate model desc protobuf self.module_dir = module_dir self.desc = module_desc_pb2.ModuleDesc() if module_name == None: module_name = module_dir.split("/")[-1] # initialize module config default value self.desc.name = module_name self.desc.contain_assets = True self.desc.return_numpy = False # init dict self.dict = defaultdict(int) self.dict.setdefault(0) def get_dict(self): """ Return dictionary in Module""" return self.dict def load(self): """ Load module config from module directory. """ #TODO(ZeyuChen): check module_desc.pb exsitance with open(ModuleConfig.module_desc_path(self.module_dir), "rb") as fi: self.desc.ParseFromString(fi.read()) if self.desc.contain_assets: # load assets word_id = 0 with open(ModuleConfig.assets_dict_path(self.module_dir)) as fi: words = fi.readlines() #TODO(ZeyuChen) check whether word id is duplicated and valid for line in fi: w, w_id = line.split() self.dict[w] = int(w_id) def return_numpy(self): """Return numpy or not according to the proto config. """ return self.desc.return_numpy def save_dict(self, word_dict, dict_name=DICT_FILENAME): """ Save dictionary for NLP module """ for w in word_dict: self.dict[w] = word_dict[w] @staticmethod def module_desc_path(module_dir): return os.path.join(module_dir, MODULE_DESC_PBNAME) @staticmethod def name_generator_path(module_dir): meta_path = os.path.join(module_dir, META_DIRNAME) mkdir(meta_path) return os.path.join(meta_path, GENERATOR_FILENAME) @staticmethod def assets_dict_path(module_dir): assets_path = os.path.join(module_dir, ASSETS_DIRNAME) mkdir(assets_path) return os.path.join(assets_path, DICT_FILENAME) @staticmethod def meta_param_path(module_dir): meta_path = os.path.join(module_dir, META_DIRNAME) mkdir(meta_path) return os.path.join(meta_path, PARAM_FILENAME) @staticmethod def meta_name_generator_path(module_dir): meta_path = os.path.join(module_dir, META_DIRNAME) mkdir(meta_path) return os.path.join(meta_path, GENERATOR_FILENAME) def create_module(sign_arr, program, module_dir=None, word_dict=None): """ Create a module from main program """ assert isinstance( program, fluid.Program), "program should be instance of fluid.Program" assert sign_arr, "signature array should not be None" if module_dir is None: module_dir = os.path.join(".", "hub_module") # create module path for saving mkdir(module_dir) module_desc = module_desc_pb2.ModuleDesc() module_desc.version = __version__ program = program.clone() if word_dict is None: module_desc.contain_assets = False else: module_desc.contain_assets = True with open(ModuleConfig.assets_dict_path(module_dir), "w") as fo: for w in word_dict: w_id = word_dict[w] fo.write("{}\t{}\n".format(w, w_id)) # save the unique name generator object var_name_arr = [ '_'.join(var.split('@')[0].split('.')[0].split('_')[0:-1]) for block in program.blocks for var in block.vars ] with fluid.unique_name.guard(): for var_name in var_name_arr: fluid.unique_name.generate(var_name) generator = fluid.unique_name.generator with open(ModuleConfig.name_generator_path(module_dir), "wb") as fo: pickle.dump(generator, fo) # save fluid Parameter param_arr = [] for param in program.global_block().iter_parameters(): param_info = { 'name': param.name, 'regularizer': param.regularizer, 'gradient_clip_attr': param.gradient_clip_attr, 'trainable': param.trainable, 'optimize_attr': param.optimize_attr, 'do_model_average': param.do_model_average } param_arr.append(param_info) with open(ModuleConfig.meta_param_path(module_dir), "wb") as fo: pickle.dump(param_arr, fo) # save signarture info sign_map = module_desc.sign2var sign_arr = to_list(sign_arr) for sign in sign_arr: assert isinstance(sign, Signature), "sign_arr should be list of Signature" if sign.get_name() in sign_map: raise "Error! sign_arr contains repeat signatrue %s" % sign var = sign_map[sign.get_name()] feed_desc = var.feed_desc fetch_desc = var.fetch_desc feed_names = sign.get_feed_names() fetch_names = sign.get_fetch_names() for index, input in enumerate(sign.get_inputs()): feed_var = feed_desc.add() feed_var.var_name = input.name feed_var.alias = feed_names[index] for index, output in enumerate(sign.get_outputs()): fetch_var = fetch_desc.add() fetch_var.var_name = output.name fetch_var.alias = fetch_names[index] # save inference program exe = fluid.Executor(place=fluid.CPUPlace()) model_dir = os.path.join(module_dir, "model") mkdir(model_dir) # TODO(wuzewu): save paddle model with a more effective way for sign in sign_arr: save_model_dir = os.path.join(model_dir, sign.get_name()) fluid.io.save_inference_model( save_model_dir, feeded_var_names=[var.name for var in sign.get_inputs()], target_vars=sign.get_outputs(), main_program=program, executor=exe) # Serialize module_desc pb module_pb = module_desc.SerializeToString() with open(ModuleConfig.module_desc_path(module_dir), "wb") as f: f.write(module_pb) class ModuleUtils(object): def __init__(self): pass @staticmethod def remove_feed_fetch_op(program): """ remove feed and fetch operator and variable for fine-tuning """ print("remove feed fetch op") block = program.global_block() need_to_remove_op_index = [] for i, op in enumerate(block.ops): if op.type == "feed" or op.type == "fetch": need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: block._remove_op(index) block._remove_var("feed") block._remove_var("fetch") program.desc.flush()