# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F import ginet_resnet101vd_ade20k.layers as L class BasicBlock(nn.Layer): def __init__(self, in_channels: int, out_channels: int, stride: int, shortcut: bool = True, if_first: bool = False, name: str = None): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = L.ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', name=name + "_branch2a") self.conv1 = L.ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, act=None, name=name + "_branch2b") if not shortcut: self.short = L.ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs: paddle.Tensor) -> paddle.Tensor: y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.elementwise_add(x=short, y=conv1, act='relu') return y class ResNet101_vd(nn.Layer): def __init__(self, multi_grid: tuple = (1, 2, 4)): super(ResNet101_vd, self).__init__() depth = [3, 4, 23, 3] num_channels = [64, 256, 512, 1024] num_filters = [64, 128, 256, 512] self.feat_channels = [c * 4 for c in num_filters] dilation_dict = {2: 2, 3: 4} self.conv1_1 = L.ConvBNLayer( in_channels=3, out_channels=32, kernel_size=3, stride=2, act='relu', name="conv1_1") self.conv1_2 = L.ConvBNLayer( in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', name="conv1_2") self.conv1_3 = L.ConvBNLayer( in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', name="conv1_3") self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.stage_list = [] for block in range(len(depth)): shortcut = False block_list = [] for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) dilation_rate = dilation_dict[ block] if dilation_dict and block in dilation_dict else 1 if block == 3: dilation_rate = dilation_rate * multi_grid[i] bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), L.BottleneckBlock( in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 and dilation_rate == 1 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name, dilation=dilation_rate)) block_list.append(bottleneck_block) shortcut = True self.stage_list.append(block_list) def forward(self, inputs: paddle.Tensor) -> paddle.Tensor: y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) feat_list = [] for stage in self.stage_list: for block in stage: y = block(y) feat_list.append(y) return feat_list