# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse from PIL import Image import numpy as np import cv2 import ppgan.faceutils as futils from ppgan.utils.preprocess import * from ppgan.utils.visual import mask2image class FaceParsePredictor: def __init__(self): self.input_size = (512, 512) self.up_ratio = 0.6 / 0.85 self.down_ratio = 0.2 / 0.85 self.width_ratio = 0.2 / 0.85 self.face_parser = futils.mask.FaceParser() def run(self, image): image = Image.fromarray(image) face = futils.dlib.detect(image) if not face: return face_on_image = face[0] image, face, crop_face = futils.dlib.crop(image, face_on_image, self.up_ratio, self.down_ratio, self.width_ratio) np_image = np.array(image) mask = self.face_parser.parse(np.float32(cv2.resize(np_image, self.input_size))) mask = cv2.resize(mask.numpy(), (256, 256)) mask = mask.astype(np.uint8) mask = mask2image(mask) return mask