#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import json import numpy as np import platform import six import sys from collections import namedtuple import paddle from paddlehub.reader import tokenization from paddlehub.common.logger import logger from paddlehub.common.utils import sys_stdout_encoding from paddlehub.dataset.dataset import InputExample from .batching import pad_batch_data import paddlehub as hub class BaseReader(object): def __init__(self, dataset, vocab_path, label_map_config=None, max_seq_len=512, do_lower_case=True, random_seed=None, use_task_id=False): self.max_seq_len = max_seq_len self.tokenizer = tokenization.FullTokenizer( vocab_file=vocab_path, do_lower_case=do_lower_case) self.vocab = self.tokenizer.vocab self.dataset = dataset self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.in_tokens = False self.use_task_id = use_task_id if self.use_task_id: self.task_id = 0 np.random.seed(random_seed) # generate label map self.label_map = {} for index, label in enumerate(self.dataset.get_labels()): self.label_map[label] = index logger.info("Dataset label map = {}".format(self.label_map)) self.current_example = 0 self.current_epoch = 0 self.num_examples = {'train': -1, 'dev': -1, 'test': -1} def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.dataset.get_train_examples() def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.dataset.get_dev_examples() def get_val_examples(self): """Gets a collection of `InputExample`s for the val set.""" return self.dataset.get_val_examples() def get_test_examples(self): """Gets a collection of `InputExample`s for prediction.""" return self.dataset.get_test_examples() def get_train_progress(self): """Gets progress for training phase.""" return self.current_example, self.current_epoch def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def _convert_example_to_record(self, example, max_seq_length, tokenizer, phase=None): """Converts a single `Example` into a single `Record`.""" text_a = tokenization.convert_to_unicode(example.text_a) tokens_a = tokenizer.tokenize(text_a) tokens_b = None if example.text_b is not None: #if "text_b" in example._fields: text_b = tokenization.convert_to_unicode(example.text_b) tokens_b = tokenizer.tokenize(text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT/ERNIE is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in tokens_a: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) if self.label_map: if example.label not in self.label_map: raise KeyError( "example.label = {%s} not in label" % example.label) label_id = self.label_map[example.label] else: label_id = example.label Record = namedtuple( 'Record', ['token_ids', 'text_type_ids', 'position_ids', 'label_id']) if phase != "predict": Record = namedtuple( 'Record', ['token_ids', 'text_type_ids', 'position_ids', 'label_id']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, label_id=label_id) else: Record = namedtuple('Record', ['token_ids', 'text_type_ids', 'position_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids) return record def _prepare_batch_data(self, examples, batch_size, phase=None): """generate batch records""" batch_records, max_len = [], 0 for index, example in enumerate(examples): if phase == "train": self.current_example = index record = self._convert_example_to_record(example, self.max_seq_len, self.tokenizer, phase) max_len = max(max_len, len(record.token_ids)) if self.in_tokens: to_append = (len(batch_records) + 1) * max_len <= batch_size else: to_append = len(batch_records) < batch_size if to_append: batch_records.append(record) else: yield self._pad_batch_records(batch_records, phase) batch_records, max_len = [record], len(record.token_ids) if batch_records: yield self._pad_batch_records(batch_records, phase) def get_num_examples(self, phase): """Get number of examples for train, dev or test.""" if phase not in ['train', 'val', 'dev', 'test']: raise ValueError( "Unknown phase, which should be in ['train', 'val'/'dev', 'test']." ) return self.num_examples[phase] def data_generator(self, batch_size=1, phase='train', shuffle=True, data=None): if phase == 'train': shuffle = True examples = self.get_train_examples() self.num_examples['train'] = len(examples) elif phase == 'val' or phase == 'dev': shuffle = False examples = self.get_dev_examples() self.num_examples['dev'] = len(examples) elif phase == 'test': shuffle = False examples = self.get_test_examples() self.num_examples['test'] = len(examples) elif phase == 'predict': shuffle = False examples = [] seq_id = 0 for item in data: # set label in order to run the program label = list(self.label_map.keys())[0] if len(item) == 1: item_i = InputExample( guid=seq_id, text_a=item[0], label=label) elif len(item) == 2: item_i = InputExample( guid=seq_id, text_a=item[0], text_b=item[1], label=label) else: raise ValueError( "The length of input_text is out of handling, which must be 1 or 2!" ) examples.append(item_i) seq_id += 1 else: raise ValueError( "Unknown phase, which should be in ['train', 'dev', 'test', 'predict']." ) def wrapper(): if shuffle: np.random.shuffle(examples) for batch_data in self._prepare_batch_data( examples, batch_size, phase=phase): yield [batch_data] return wrapper class ClassifyReader(BaseReader): def _pad_batch_records(self, batch_records, phase=None): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] padded_token_ids, input_mask = pad_batch_data( batch_token_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id, return_input_mask=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) if phase != "predict": batch_labels = [record.label_id for record in batch_records] batch_labels = np.array(batch_labels).astype("int64").reshape( [-1, 1]) return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, batch_labels ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids, batch_labels ] else: return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids ] return return_list class SequenceLabelReader(BaseReader): def _pad_batch_records(self, batch_records, phase=None): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] # padding padded_token_ids, input_mask, batch_seq_lens = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, max_seq_len=self.max_seq_len, return_input_mask=True, return_seq_lens=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) if phase != "predict": batch_label_ids = [record.label_ids for record in batch_records] padded_label_ids = pad_batch_data( batch_label_ids, max_seq_len=self.max_seq_len, pad_idx=len(self.label_map) - 1) return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_label_ids, batch_seq_lens ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids, padded_label_ids, batch_seq_lens ] else: return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, batch_seq_lens ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids, batch_seq_lens ] return return_list def _reseg_token_label(self, tokens, tokenizer, phase, labels=None): if phase != "predict": if len(tokens) != len(labels): raise ValueError( "The length of tokens must be same with labels") ret_tokens = [] ret_labels = [] for token, label in zip(tokens, labels): sub_token = tokenizer.tokenize(token) if len(sub_token) == 0: continue ret_tokens.extend(sub_token) ret_labels.append(label) if len(sub_token) < 2: continue sub_label = label if label.startswith("B-"): sub_label = "I-" + label[2:] ret_labels.extend([sub_label] * (len(sub_token) - 1)) if len(ret_tokens) != len(ret_labels): raise ValueError( "The length of ret_tokens can't match with labels") return ret_tokens, ret_labels else: ret_tokens = [] for token in tokens: sub_token = tokenizer.tokenize(token) if len(sub_token) == 0: continue ret_tokens.extend(sub_token) if len(sub_token) < 2: continue return ret_tokens def _convert_example_to_record(self, example, max_seq_length, tokenizer, phase=None): tokens = tokenization.convert_to_unicode(example.text_a).split(u"") if phase != "predict": labels = tokenization.convert_to_unicode(example.label).split(u"") tokens, labels = self._reseg_token_label( tokens=tokens, labels=labels, tokenizer=tokenizer, phase=phase) if len(tokens) > max_seq_length - 2: tokens = tokens[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) text_type_ids = [0] * len(token_ids) no_entity_id = len(self.label_map) - 1 label_ids = [no_entity_id ] + [self.label_map[label] for label in labels] + [no_entity_id] Record = namedtuple( 'Record', ['token_ids', 'text_type_ids', 'position_ids', 'label_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, label_ids=label_ids) else: tokens = self._reseg_token_label( tokens=tokens, tokenizer=tokenizer, phase=phase) if len(tokens) > max_seq_length - 2: tokens = tokens[0:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) text_type_ids = [0] * len(token_ids) Record = namedtuple('Record', ['token_ids', 'text_type_ids', 'position_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, ) return record class LACClassifyReader(object): def __init__(self, dataset, vocab_path): self.dataset = dataset self.lac = hub.Module(name="lac") self.tokenizer = tokenization.FullTokenizer( vocab_file=vocab_path, do_lower_case=False) self.vocab = self.tokenizer.vocab self.feed_key = list( self.lac.processor.data_format( sign_name="lexical_analysis").keys())[0] self.num_examples = {'train': -1, 'dev': -1, 'test': -1} def get_num_examples(self, phase): """Get number of examples for train, dev or test.""" if phase not in ['train', 'val', 'dev', 'test']: raise ValueError( "Unknown phase, which should be in ['train', 'val'/'dev', 'test']." ) return self.num_examples[phase] def get_train_examples(self): """Gets a collection of `InputExample`s for the train set.""" return self.dataset.get_train_examples() def get_dev_examples(self): """Gets a collection of `InputExample`s for the dev set.""" return self.dataset.get_dev_examples() def get_val_examples(self): """Gets a collection of `InputExample`s for the val set.""" return self.dataset.get_val_examples() def get_test_examples(self): """Gets a collection of `InputExample`s for prediction.""" return self.dataset.get_test_examples() def get_train_progress(self): """Gets progress for training phase.""" return self.current_example, self.current_epoch def data_generator(self, batch_size=1, phase="train", shuffle=False, data=None): if phase == "train": shuffle = True data = self.dataset.get_train_examples() self.num_examples['train'] = len(data) elif phase == "test": shuffle = False data = self.dataset.get_test_examples() self.num_examples['test'] = len(data) elif phase == "val" or phase == "dev": shuffle = False data = self.dataset.get_dev_examples() self.num_examples['dev'] = len(data) elif phase == "predict": data = data else: raise ValueError( "Unknown phase, which should be in ['train', 'dev', 'test'].") def preprocess(text): data_dict = {self.feed_key: [text]} processed = self.lac.lexical_analysis(data=data_dict) processed = [ self.vocab[word] for word in processed[0]['word'] if word in self.vocab ] if len(processed) == 0: if six.PY2: text = text.encode(sys_stdout_encoding()) logger.warning( "The words in text %s can't be found in the vocabulary." % (text)) return processed def _data_reader(): if shuffle: np.random.shuffle(data) if phase == "predict": for text in data: text = preprocess(text) if not text: continue yield (text, ) else: for item in data: text = preprocess(item.text_a) if not text: continue yield (text, item.label) return paddle.batch(_data_reader, batch_size=batch_size) class MultiLabelClassifyReader(BaseReader): def _pad_batch_records(self, batch_records, phase=None): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] # padding padded_token_ids, input_mask = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, max_seq_len=self.max_seq_len, return_input_mask=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, max_seq_len=self.max_seq_len, pad_idx=self.pad_id) if phase != "predict": batch_labels_ids = [record.label_ids for record in batch_records] num_label = len(self.dataset.get_labels()) batch_labels = np.array(batch_labels_ids).astype("int64").reshape( [-1, num_label]) return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, batch_labels ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids, batch_labels ] else: return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask ] if self.use_task_id: padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask, padded_task_ids ] return return_list def _convert_example_to_record(self, example, max_seq_length, tokenizer, phase=None): """Converts a single `Example` into a single `Record`.""" text_a = tokenization.convert_to_unicode(example.text_a) tokens_a = tokenizer.tokenize(text_a) tokens_b = None if example.text_b is not None: #if "text_b" in example._fields: text_b = tokenization.convert_to_unicode(example.text_b) tokens_b = tokenizer.tokenize(text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] tokens = [] text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in tokens_a: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) label_ids = [] if phase == "predict": label_ids = [0, 0, 0, 0, 0, 0] else: for label in example.label: label_ids.append(int(label)) if phase != "predict": Record = namedtuple( 'Record', ['token_ids', 'text_type_ids', 'position_ids', 'label_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, label_ids=label_ids) else: Record = namedtuple('Record', ['token_ids', 'text_type_ids', 'position_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids) return record if __name__ == '__main__': pass