# coding:utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import paddle from paddlehub.process.functional import get_img_file from paddlehub.env import DATA_HOME from typing import Callable class Colorizedataset(paddle.io.Dataset): """ Dataset for colorization. Args: transform(callmethod) : The method of preprocess images. mode(str): The mode for preparing dataset. Returns: DataSet: An iterable object for data iterating """ def __init__(self, transform: Callable, mode: str = 'train'): self.mode = mode self.transform = transform if self.mode == 'train': self.file = 'train' elif self.mode == 'test': self.file = 'test' self.file = os.path.join(DATA_HOME, 'canvas', self.file) self.data = get_img_file(self.file) def __getitem__(self, idx: int) -> np.ndarray: img_path = self.data[idx] im = self.transform(img_path) return im def __len__(self): return len(self.data)