# resnet50_vd_wildanimals
|模型名称|resnet50_vd_wildanimals|
| :--- | :---: |
|类别|图像-图像分类|
|网络|ResNet_vd|
|数据集|IFAW 自建野生动物数据集|
|是否支持Fine-tuning|否|
|模型大小|92MB|
|最新更新日期|-|
|数据指标|-|
## 一、模型基本信息
- ### 模型介绍
- ResNet-vd 其实就是 ResNet-D,是ResNet 原始结构的变种,可用于图像分类和特征提取。该 PaddleHub Module 采用百度自建野生动物数据集训练得到,支持'象牙制品','象牙', '大象', '虎皮', '老虎', '虎牙/虎爪/虎骨', '穿山甲甲片', '穿山甲', '穿山甲爪子', '其他' 这十个标签的识别。模型的详情可参考[论文](https://arxiv.org/pdf/1812.01187.pdf)。
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 1.6.2
- paddlehub >= 1.6.0 | [如何安装paddlehub](../../../../docs/docs_ch/get_start/installation.rst)
- ### 2、安装
- ```shell
$ hub install resnet50_vd_wildanimals
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
$ hub run resnet50_vd_wildanimals --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现分类模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、预测代码示例
- ```python
import paddlehub as hub
import cv2
classifier = hub.Module(name="resnet50_vd_wildanimals")
result = classifier.classification(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = classifier.classification(paths=['/PATH/TO/IMAGE'])
```
- ### 3、API
- ```python
def classification(images=None,
paths=None,
batch_size=1,
use_gpu=False,
top_k=1):
```
- 分类接口API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,每一个图片数据的shape 均为 \[H, W, C\],颜色空间为 BGR;
- paths (list\[str\]): 图片的路径;
- batch\_size (int): batch 的大小;
- use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量**
- top\_k (int): 返回预测结果的前 k 个。
- **返回**
- res (list\[dict\]): 分类结果,列表的每一个元素均为字典,其中 key 为识别的菜品类别,value为置信度。
## 四、服务部署
- PaddleHub Serving可以部署一个野生动物及其制品识别的在线服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m resnet50_vd_wildanimals
```
- 这样就完成了一个野生动物及其制品识别的在线服务的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/resnet50_vd_wildanimals"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
* 1.1.0
移除 Fluid API
- ```shell
$ hub install resnet50_vd_wildanimals==1.1.0
```