# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning on pointwise text matching task """ import argparse import ast import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.") parser.add_argument("--network", type=str, default=None, help="Pre-defined network which was connected after module.") args = parser.parse_args() # yapf: enable. jieba_paddle = hub.Module(name='jieba_paddle') def cut(text): res = jieba_paddle.cut(text, use_paddle=False) return res if __name__ == '__main__': # Load Paddlehub word embedding pretrained model module = hub.Module(name="word2vec_skipgram") # module = hub.Module(name="simnet_bow") # module = hub.Module(name="tencent_ailab_chinese_embedding_small") # Pointwise task needs: query, title (2 slots) inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len, num_slots=2) # Tokenizer tokenizes the text data and encodes the data as model needed. # If you use transformer modules (ernie, bert, roberta and so on), tokenizer should be hub.BertTokenizer. # Otherwise, tokenizer should be hub.CustomTokenizer. # If you choose CustomTokenizer, you can also change the chinese word segmentation tool, for example jieba. tokenizer = hub.CustomTokenizer( vocab_file=module.get_vocab_path(), tokenize_chinese_chars=True, cut_function=cut, # jieba.cut as cut function ) dataset = hub.dataset.LCQMC( tokenizer=tokenizer, max_seq_len=args.max_seq_len) # Construct transfer learning network # Use token-level output. query = outputs["emb"] title = outputs['emb_2'] # Select fine-tune strategy strategy = hub.DefaultStrategy(optimizer_name="sgd") # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=False, use_cuda=False, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=strategy) # Define a text matching task by PaddleHub's API # network choice: bow, cnn, gru, lstm (PaddleHub pre-defined network) pointwise_matching_task = hub.PointwiseTextMatchingTask( dataset=dataset, query_feature=query, title_feature=title, tokenizer=tokenizer, network=args.network, config=config) # Prediction data sample. text_pairs = [ [ "请问不是您的账户吗?", # query "您好,请问您使用的邮箱类型是?" # title ], [ "推荐个手机游戏", # query "手机游戏推荐" # title ] ] # Predict by PaddleHub's API results = pointwise_matching_task.predict( data=text_pairs, max_seq_len=args.max_seq_len, label_list=dataset.get_labels(), return_result=True, accelerate_mode=True) for index, text in enumerate(text_pairs): print("data: %s, prediction_label: %s" % (text, results[index]))