# ginet_resnet101vd_voc |Module Name|ginet_resnet101vd_voc| | :--- | :---: | |Category|Image Segmentation| |Network|ginet_resnet101vd| |Dataset|PascalVOC2012| |Fine-tuning supported or not|Yes| |Module Size|286MB| |Data indicators|-| |Latest update date|2021-12-14| ## I. Basic Information - ### Application Effect Display - Sample results:
- ### Module Introduction - We will show how to use PaddleHub to finetune the pre-trained model and complete the prediction. - For more information, please refer to: [ginet](https://arxiv.org/pdf/2009.06160) ## II. Installation - ### 1、Environmental Dependence - paddlepaddle >= 2.0.0 - paddlehub >= 2.0.0 - ### 2、Installation - ```shell $ hub install ginet_resnet101vd_voc ``` - In case of any problems during installation, please refer to:[Windows_Quickstart](../../../../docs/docs_en/get_start/windows_quickstart.md) | [Linux_Quickstart](../../../../docs/docs_en/get_start/linux_quickstart.md) | [Mac_Quickstart](../../../../docs/docs_en/get_start/mac_quickstart.md) ## III. Module API Prediction - ### 1、Prediction Code Example - ```python import cv2 import paddle import paddlehub as hub if __name__ == '__main__': model = hub.Module(name='ginet_resnet101vd_voc') img = cv2.imread("/PATH/TO/IMAGE") result = model.predict(images=[img], visualization=True) ``` - ### 2.Fine-tune and Encapsulation - After completing the installation of PaddlePaddle and PaddleHub, you can start using the ginet_resnet101vd_voc model to fine-tune datasets such as OpticDiscSeg. - Steps: - Step1: Define the data preprocessing method - ```python from paddlehub.vision.segmentation_transforms import Compose, Resize, Normalize transform = Compose([Resize(target_size=(512, 512)), Normalize()]) ``` - `segmentation_transforms`: The data enhancement module defines lots of data preprocessing methods. Users can replace the data preprocessing methods according to their needs. - Step2: Download the dataset - ```python from paddlehub.datasets import OpticDiscSeg train_reader = OpticDiscSeg(transform, mode='train') ``` * `transforms`: data preprocessing methods. * `mode`: Select the data mode, the options are `train`, `test`, `val`. Default is `train`. * Dataset preparation can be referred to [opticdiscseg.py](../../paddlehub/datasets/opticdiscseg.py)。`hub.datasets.OpticDiscSeg()`will be automatically downloaded from the network and decompressed to the `$HOME/.paddlehub/dataset` directory under the user directory. - Step3: Load the pre-trained model - ```python import paddlehub as hub model = hub.Module(name='ginet_resnet101vd_voc', num_classes=2, pretrained=None) ``` - `name`: model name. - `load_checkpoint`: Whether to load the self-trained model, if it is None, load the provided parameters. - Step4: Optimization strategy - ```python import paddle from paddlehub.finetune.trainer import Trainer scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.01, decay_steps=1000, power=0.9, end_lr=0.0001) optimizer = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters()) trainer = Trainer(model, optimizer, checkpoint_dir='ttest_ckpt_img_seg', use_gpu=True) trainer.train(train_reader, epochs=10, batch_size=4, log_interval=10, save_interval=4) ``` - Model prediction - When Fine-tune is completed, the model with the best performance on the verification set will be saved in the `${CHECKPOINT_DIR}/best_model` directory. We use this model to make predictions. The `predict.py` script is as follows: ```python import paddle import cv2 import paddlehub as hub if __name__ == '__main__': model = hub.Module(name='ginet_resnet101vd_voc', pretrained='/PATH/TO/CHECKPOINT') img = cv2.imread("/PATH/TO/IMAGE") model.predict(images=[img], visualization=True) ``` - **Args** * `images`: Image path or ndarray data with format [H, W, C], BGR. * `visualization`: Whether to save the recognition results as picture files. * `save_path`: Save path of the result, default is 'seg_result'. ## IV. Server Deployment - PaddleHub Serving can deploy an online service of image segmentation. - ### Step 1: Start PaddleHub Serving - Run the startup command: - ```shell $ hub serving start -m ginet_resnet101vd_voc ``` - The servitization API is now deployed and the default port number is 8866. - **NOTE:** If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set. - ### Step 2: Send a predictive request - With a configured server, use the following lines of code to send the prediction request and obtain the result: ```python import requests import json import cv2 import base64 import numpy as np def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data org_im = cv2.imread('/PATH/TO/IMAGE') data = {'images':[cv2_to_base64(org_im)]} headers = {"Content-type": "application/json"} url = "http://127.0.0.1:8866/predict/ginet_resnet101vd_voc" r = requests.post(url=url, headers=headers, data=json.dumps(data)) mask = base64_to_cv2(r.json()["results"][0]) ``` ## V. Release Note - 1.0.0 First release