# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg.cvlibs import manager, param_init from paddleseg.models import layers from paddleseg.utils import utils __all__ = ["HRNet_W18"] class HRNet(nn.Layer): """ The HRNet implementation based on PaddlePaddle. The original article refers to Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition" (https://arxiv.org/pdf/1908.07919.pdf). Args: pretrained (str, optional): The path of pretrained model. stage1_num_modules (int, optional): Number of modules for stage1. Default 1. stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4). stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64). stage2_num_modules (int, optional): Number of modules for stage2. Default 1. stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4). stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36). stage3_num_modules (int, optional): Number of modules for stage3. Default 4. stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4). stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72). stage4_num_modules (int, optional): Number of modules for stage4. Default 3. stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4). stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144). has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False. align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. """ def __init__(self, input_channels: int=3, pretrained: int = None, stage1_num_modules: int = 1, stage1_num_blocks: list = (4, ), stage1_num_channels: list = (64, ), stage2_num_modules: int = 1, stage2_num_blocks: list = (4, 4), stage2_num_channels: list = (18, 36), stage3_num_modules: int = 4, stage3_num_blocks: list = (4, 4, 4), stage3_num_channels: list = (18, 36, 72), stage4_num_modules: int = 3, stage4_num_blocks: list = (4, 4, 4, 4), stage4_num_channels: list = (18, 36, 72, 144), has_se: bool = False, align_corners: bool = False, padding_same: bool = True): super(HRNet, self).__init__() self.pretrained = pretrained self.stage1_num_modules = stage1_num_modules self.stage1_num_blocks = stage1_num_blocks self.stage1_num_channels = stage1_num_channels self.stage2_num_modules = stage2_num_modules self.stage2_num_blocks = stage2_num_blocks self.stage2_num_channels = stage2_num_channels self.stage3_num_modules = stage3_num_modules self.stage3_num_blocks = stage3_num_blocks self.stage3_num_channels = stage3_num_channels self.stage4_num_modules = stage4_num_modules self.stage4_num_blocks = stage4_num_blocks self.stage4_num_channels = stage4_num_channels self.has_se = has_se self.align_corners = align_corners self.feat_channels = [i for i in stage4_num_channels] self.feat_channels = [64] + self.feat_channels self.conv_layer1_1 = layers.ConvBNReLU( in_channels=input_channels, out_channels=64, kernel_size=3, stride=2, padding=1 if not padding_same else 'same', bias_attr=False) self.conv_layer1_2 = layers.ConvBNReLU( in_channels=64, out_channels=64, kernel_size=3, stride=2, padding=1 if not padding_same else 'same', bias_attr=False) self.la1 = Layer1( num_channels=64, num_blocks=self.stage1_num_blocks[0], num_filters=self.stage1_num_channels[0], has_se=has_se, name="layer2", padding_same=padding_same) self.tr1 = TransitionLayer( in_channels=[self.stage1_num_channels[0] * 4], out_channels=self.stage2_num_channels, name="tr1", padding_same=padding_same) self.st2 = Stage( num_channels=self.stage2_num_channels, num_modules=self.stage2_num_modules, num_blocks=self.stage2_num_blocks, num_filters=self.stage2_num_channels, has_se=self.has_se, name="st2", align_corners=align_corners, padding_same=padding_same) self.tr2 = TransitionLayer( in_channels=self.stage2_num_channels, out_channels=self.stage3_num_channels, name="tr2", padding_same=padding_same) self.st3 = Stage( num_channels=self.stage3_num_channels, num_modules=self.stage3_num_modules, num_blocks=self.stage3_num_blocks, num_filters=self.stage3_num_channels, has_se=self.has_se, name="st3", align_corners=align_corners, padding_same=padding_same) self.tr3 = TransitionLayer( in_channels=self.stage3_num_channels, out_channels=self.stage4_num_channels, name="tr3", padding_same=padding_same) self.st4 = Stage( num_channels=self.stage4_num_channels, num_modules=self.stage4_num_modules, num_blocks=self.stage4_num_blocks, num_filters=self.stage4_num_channels, has_se=self.has_se, name="st4", align_corners=align_corners, padding_same=padding_same) def forward(self, x: paddle.Tensor) -> paddle.Tensor: feat_list = [] conv1 = self.conv_layer1_1(x) feat_list.append(conv1) conv2 = self.conv_layer1_2(conv1) la1 = self.la1(conv2) tr1 = self.tr1([la1]) st2 = self.st2(tr1) tr2 = self.tr2(st2) st3 = self.st3(tr2) tr3 = self.tr3(st3) st4 = self.st4(tr3) feat_list = feat_list + st4 return feat_list class Layer1(nn.Layer): def __init__(self, num_channels: int, num_filters: int, num_blocks: int, has_se: bool = False, name: str = None, padding_same: bool = True): super(Layer1, self).__init__() self.bottleneck_block_list = [] for i in range(num_blocks): bottleneck_block = self.add_sublayer( "bb_{}_{}".format(name, i + 1), BottleneckBlock( num_channels=num_channels if i == 0 else num_filters * 4, num_filters=num_filters, has_se=has_se, stride=1, downsample=True if i == 0 else False, name=name + '_' + str(i + 1), padding_same=padding_same)) self.bottleneck_block_list.append(bottleneck_block) def forward(self, x: paddle.Tensor): conv = x for block_func in self.bottleneck_block_list: conv = block_func(conv) return conv class TransitionLayer(nn.Layer): def __init__(self, in_channels: int, out_channels: int, name: str = None, padding_same: bool = True): super(TransitionLayer, self).__init__() num_in = len(in_channels) num_out = len(out_channels) self.conv_bn_func_list = [] for i in range(num_out): residual = None if i < num_in: if in_channels[i] != out_channels[i]: residual = self.add_sublayer( "transition_{}_layer_{}".format(name, i + 1), layers.ConvBNReLU( in_channels=in_channels[i], out_channels=out_channels[i], kernel_size=3, padding=1 if not padding_same else 'same', bias_attr=False)) else: residual = self.add_sublayer( "transition_{}_layer_{}".format(name, i + 1), layers.ConvBNReLU( in_channels=in_channels[-1], out_channels=out_channels[i], kernel_size=3, stride=2, padding=1 if not padding_same else 'same', bias_attr=False)) self.conv_bn_func_list.append(residual) def forward(self, x: paddle.Tensor) -> paddle.Tensor: outs = [] for idx, conv_bn_func in enumerate(self.conv_bn_func_list): if conv_bn_func is None: outs.append(x[idx]) else: if idx < len(x): outs.append(conv_bn_func(x[idx])) else: outs.append(conv_bn_func(x[-1])) return outs class Branches(nn.Layer): def __init__(self, num_blocks: int, in_channels: int, out_channels: int, has_se: bool = False, name: str = None, padding_same: bool = True): super(Branches, self).__init__() self.basic_block_list = [] for i in range(len(out_channels)): self.basic_block_list.append([]) for j in range(num_blocks[i]): in_ch = in_channels[i] if j == 0 else out_channels[i] basic_block_func = self.add_sublayer( "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1), BasicBlock( num_channels=in_ch, num_filters=out_channels[i], has_se=has_se, name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1), padding_same=padding_same)) self.basic_block_list[i].append(basic_block_func) def forward(self, x: paddle.Tensor) -> paddle.Tensor: outs = [] for idx, input in enumerate(x): conv = input for basic_block_func in self.basic_block_list[idx]: conv = basic_block_func(conv) outs.append(conv) return outs class BottleneckBlock(nn.Layer): def __init__(self, num_channels: int, num_filters: int, has_se: bool, stride: int = 1, downsample: bool = False, name:str = None, padding_same: bool = True): super(BottleneckBlock, self).__init__() self.has_se = has_se self.downsample = downsample self.conv1 = layers.ConvBNReLU( in_channels=num_channels, out_channels=num_filters, kernel_size=1, bias_attr=False) self.conv2 = layers.ConvBNReLU( in_channels=num_filters, out_channels=num_filters, kernel_size=3, stride=stride, padding=1 if not padding_same else 'same', bias_attr=False) self.conv3 = layers.ConvBN( in_channels=num_filters, out_channels=num_filters * 4, kernel_size=1, bias_attr=False) if self.downsample: self.conv_down = layers.ConvBN( in_channels=num_channels, out_channels=num_filters * 4, kernel_size=1, bias_attr=False) if self.has_se: self.se = SELayer( num_channels=num_filters * 4, num_filters=num_filters * 4, reduction_ratio=16, name=name + '_fc') self.add = layers.Add() self.relu = layers.Activation("relu") def forward(self, x: paddle.Tensor) -> paddle.Tensor: residual = x conv1 = self.conv1(x) conv2 = self.conv2(conv1) conv3 = self.conv3(conv2) if self.downsample: residual = self.conv_down(x) if self.has_se: conv3 = self.se(conv3) y = self.add(conv3, residual) y = self.relu(y) return y class BasicBlock(nn.Layer): def __init__(self, num_channels: int, num_filters: int, stride: int = 1, has_se: bool = False, downsample: bool = False, name: str = None, padding_same: bool = True): super(BasicBlock, self).__init__() self.has_se = has_se self.downsample = downsample self.conv1 = layers.ConvBNReLU( in_channels=num_channels, out_channels=num_filters, kernel_size=3, stride=stride, padding=1 if not padding_same else 'same', bias_attr=False) self.conv2 = layers.ConvBN( in_channels=num_filters, out_channels=num_filters, kernel_size=3, padding=1 if not padding_same else 'same', bias_attr=False) if self.downsample: self.conv_down = layers.ConvBNReLU( in_channels=num_channels, out_channels=num_filters, kernel_size=1, bias_attr=False) if self.has_se: self.se = SELayer( num_channels=num_filters, num_filters=num_filters, reduction_ratio=16, name=name + '_fc') self.add = layers.Add() self.relu = layers.Activation("relu") def forward(self, x: paddle.Tensor) -> paddle.Tensor: residual = x conv1 = self.conv1(x) conv2 = self.conv2(conv1) if self.downsample: residual = self.conv_down(x) if self.has_se: conv2 = self.se(conv2) y = self.add(conv2, residual) y = self.relu(y) return y class SELayer(nn.Layer): def __init__(self, num_channels: int, num_filters: int, reduction_ratio: int, name: str = None): super(SELayer, self).__init__() self.pool2d_gap = nn.AdaptiveAvgPool2D(1) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = nn.Linear( num_channels, med_ch, weight_attr=paddle.ParamAttr( initializer=nn.initializer.Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = nn.Linear( med_ch, num_filters, weight_attr=paddle.ParamAttr( initializer=nn.initializer.Uniform(-stdv, stdv))) def forward(self, x: paddle.Tensor) -> paddle.Tensor: pool = self.pool2d_gap(x) pool = paddle.reshape(pool, shape=[-1, self._num_channels]) squeeze = self.squeeze(pool) squeeze = F.relu(squeeze) excitation = self.excitation(squeeze) excitation = F.sigmoid(excitation) excitation = paddle.reshape( excitation, shape=[-1, self._num_channels, 1, 1]) out = x * excitation return out class Stage(nn.Layer): def __init__(self, num_channels: int, num_modules: int, num_blocks: int, num_filters: int, has_se: bool = False, multi_scale_output: bool = True, name: str = None, align_corners: bool = False, padding_same: bool = True): super(Stage, self).__init__() self._num_modules = num_modules self.stage_func_list = [] for i in range(num_modules): if i == num_modules - 1 and not multi_scale_output: stage_func = self.add_sublayer( "stage_{}_{}".format(name, i + 1), HighResolutionModule( num_channels=num_channels, num_blocks=num_blocks, num_filters=num_filters, has_se=has_se, multi_scale_output=False, name=name + '_' + str(i + 1), align_corners=align_corners, padding_same=padding_same)) else: stage_func = self.add_sublayer( "stage_{}_{}".format(name, i + 1), HighResolutionModule( num_channels=num_channels, num_blocks=num_blocks, num_filters=num_filters, has_se=has_se, name=name + '_' + str(i + 1), align_corners=align_corners, padding_same=padding_same)) self.stage_func_list.append(stage_func) def forward(self, x: paddle.Tensor) -> paddle.Tensor: out = x for idx in range(self._num_modules): out = self.stage_func_list[idx](out) return out class HighResolutionModule(nn.Layer): def __init__(self, num_channels: int, num_blocks: int, num_filters: int, has_se: bool = False, multi_scale_output: bool = True, name: str = None, align_corners: bool = False, padding_same: bool = True): super(HighResolutionModule, self).__init__() self.branches_func = Branches( num_blocks=num_blocks, in_channels=num_channels, out_channels=num_filters, has_se=has_se, name=name, padding_same=padding_same) self.fuse_func = FuseLayers( in_channels=num_filters, out_channels=num_filters, multi_scale_output=multi_scale_output, name=name, align_corners=align_corners, padding_same=padding_same) def forward(self, x: paddle.Tensor) -> paddle.Tensor: out = self.branches_func(x) out = self.fuse_func(out) return out class FuseLayers(nn.Layer): def __init__(self, in_channels: int, out_channels: int, multi_scale_output: bool = True, name: str = None, align_corners: bool = False, padding_same: bool = True): super(FuseLayers, self).__init__() self._actual_ch = len(in_channels) if multi_scale_output else 1 self._in_channels = in_channels self.align_corners = align_corners self.residual_func_list = [] for i in range(self._actual_ch): for j in range(len(in_channels)): if j > i: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}".format(name, i + 1, j + 1), layers.ConvBN( in_channels=in_channels[j], out_channels=out_channels[i], kernel_size=1, bias_attr=False)) self.residual_func_list.append(residual_func) elif j < i: pre_num_filters = in_channels[j] for k in range(i - j): if k == i - j - 1: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}_{}".format( name, i + 1, j + 1, k + 1), layers.ConvBN( in_channels=pre_num_filters, out_channels=out_channels[i], kernel_size=3, stride=2, padding=1 if not padding_same else 'same', bias_attr=False)) pre_num_filters = out_channels[i] else: residual_func = self.add_sublayer( "residual_{}_layer_{}_{}_{}".format( name, i + 1, j + 1, k + 1), layers.ConvBNReLU( in_channels=pre_num_filters, out_channels=out_channels[j], kernel_size=3, stride=2, padding=1 if not padding_same else 'same', bias_attr=False)) pre_num_filters = out_channels[j] self.residual_func_list.append(residual_func) def forward(self, x: paddle.Tensor) -> paddle.Tensor: outs = [] residual_func_idx = 0 for i in range(self._actual_ch): residual = x[i] residual_shape = paddle.shape(residual)[-2:] for j in range(len(self._in_channels)): if j > i: y = self.residual_func_list[residual_func_idx](x[j]) residual_func_idx += 1 y = F.interpolate( y, residual_shape, mode='bilinear', align_corners=self.align_corners) residual = residual + y elif j < i: y = x[j] for k in range(i - j): y = self.residual_func_list[residual_func_idx](y) residual_func_idx += 1 residual = residual + y residual = F.relu(residual) outs.append(residual) return outs def HRNet_W18(**kwargs): model = HRNet( stage1_num_modules=1, stage1_num_blocks=[4], stage1_num_channels=[64], stage2_num_modules=1, stage2_num_blocks=[4, 4], stage2_num_channels=[18, 36], stage3_num_modules=4, stage3_num_blocks=[4, 4, 4], stage3_num_channels=[18, 36, 72], stage4_num_modules=3, stage4_num_blocks=[4, 4, 4, 4], stage4_num_channels=[18, 36, 72, 144], **kwargs) return model