#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import os import collections import math import six import json from collections import OrderedDict import numpy as np import paddle.fluid as fluid from .basic_task import BasicTask from paddlehub.common.logger import logger from paddlehub.reader import tokenization from paddlehub.finetune.evaluator import squad1_evaluate from paddlehub.finetune.evaluator import squad2_evaluate from paddlehub.finetune.evaluator import cmrc2018_evaluate def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted( enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def get_final_text(pred_text, orig_text, do_lower_case, is_english): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) if is_english: tok_text = " ".join(tokenizer.tokenize(orig_text)) else: tok_text = "".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: # using in debug # logger.info( # "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): # using in debug # logger.info("Length not equal after stripping spaces: '%s' vs '%s'", # orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: # using in debug # logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: # using in debug # tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, version_2_with_negative, null_score_diff_threshold, is_english): example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple("PrelimPrediction", [ "feature_index", "start_index", "end_index", "start_logit", "end_logit" ]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): if feature.unique_id not in unique_id_to_result: logger.info( "As using pyreader, the last one batch is so small that the feature %s in the last batch is discarded " % feature.unique_id) continue result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[ 0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] if not prelim_predictions: logger.warning(("not prelim_predictions:", example.qas_id)) for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:( pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:( orig_doc_end + 1)] if is_english: tok_text = " ".join(tok_tokens) else: tok_text = "".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) if is_english: orig_text = " ".join(orig_tokens) else: orig_text = "".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, is_english) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null if best_non_null_entry: score_diff -= best_non_null_entry.start_logit + best_non_null_entry.end_logit scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json """Write final predictions to the json file and log-odds of null if needed.""" with open(output_prediction_file, "w") as writer: logger.info("Writing predictions to: %s" % (output_prediction_file)) writer.write( json.dumps(all_predictions, indent=4, ensure_ascii=is_english) + "\n") with open(output_nbest_file, "w") as writer: logger.info("Writing nbest to: %s" % (output_nbest_file)) writer.write( json.dumps(all_nbest_json, indent=4, ensure_ascii=is_english) + "\n") if version_2_with_negative: logger.info("Writing null_log_odds to: %s" % (output_nbest_file)) with open(output_null_log_odds_file, "w") as writer: writer.write( json.dumps(scores_diff_json, indent=4, ensure_ascii=is_english) + "\n") class ReadingComprehensionTask(BasicTask): def __init__(self, feature, feed_list, data_reader, startup_program=None, config=None, metrics_choices=None, sub_task="squad", null_score_diff_threshold=0.0, n_best_size=20, max_answer_length=30): main_program = feature.block.program super(ReadingComprehensionTask, self).__init__( data_reader=data_reader, main_program=main_program, feed_list=feed_list, startup_program=startup_program, config=config, metrics_choices=metrics_choices) self.feature = feature self.data_reader = data_reader self.sub_task = sub_task.lower() self.version_2_with_negative = (self.sub_task == "squad2.0") if self.sub_task in ["squad2.0", "squad"]: self.is_english = True elif self.sub_task in ["cmrc2018", "drcd"]: self.is_english = False else: raise Exception("No language type of data set is sepecified") self.null_score_diff_threshold = null_score_diff_threshold self.n_best_size = n_best_size self.max_answer_length = max_answer_length def _build_net(self): self.unique_ids = fluid.layers.data( name="unique_ids", shape=[-1, 1], lod_level=0, dtype="int64") logits = fluid.layers.fc( input=self.feature, size=2, num_flatten_dims=2, param_attr=fluid.ParamAttr( name="cls_seq_label_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name="cls_seq_label_out_b", initializer=fluid.initializer.Constant(0.))) logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1]) start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0) batch_ones = fluid.layers.fill_constant_batch_size_like( input=start_logits, dtype='int64', shape=[1], value=1) num_seqs = fluid.layers.reduce_sum(input=batch_ones) return [start_logits, end_logits, num_seqs] def _add_label(self): start_positions = fluid.layers.data( name="start_positions", shape=[-1, 1], lod_level=0, dtype="int64") end_positions = fluid.layers.data( name="end_positions", shape=[-1, 1], lod_level=0, dtype="int64") return [start_positions, end_positions] def _add_loss(self): start_positions = self.labels[0] end_positions = self.labels[1] start_logits = self.outputs[0] end_logits = self.outputs[1] start_loss = fluid.layers.softmax_with_cross_entropy( logits=start_logits, label=start_positions) start_loss = fluid.layers.mean(x=start_loss) end_loss = fluid.layers.softmax_with_cross_entropy( logits=end_logits, label=end_positions) end_loss = fluid.layers.mean(x=end_loss) total_loss = (start_loss + end_loss) / 2.0 return total_loss def _add_metrics(self): return [] @property def feed_list(self): feed_list = [varname for varname in self._base_feed_list ] + [self.unique_ids.name] if self.is_train_phase or self.is_test_phase: feed_list += [label.name for label in self.labels] return feed_list @property def fetch_list(self): if self.is_train_phase or self.is_test_phase: return [ self.loss.name, self.outputs[-1].name, self.unique_ids.name, self.outputs[0].name, self.outputs[1].name ] elif self.is_predict_phase: return [ self.unique_ids.name, ] + [output.name for output in self.outputs] def _calculate_metrics(self, run_states): total_cost, total_num_seqs, all_results = [], [], [] run_step = 0 RawResult = collections.namedtuple( "RawResult", ["unique_id", "start_logits", "end_logits"]) for run_state in run_states: np_loss = run_state.run_results[0] np_num_seqs = run_state.run_results[1] total_cost.extend(np_loss * np_num_seqs) total_num_seqs.extend(np_num_seqs) run_step += run_state.run_step if self.is_test_phase: np_unique_ids = run_state.run_results[2] np_start_logits = run_state.run_results[3] np_end_logits = run_state.run_results[4] for idx in range(np_unique_ids.shape[0]): unique_id = int(np_unique_ids[idx]) start_logits = [float(x) for x in np_start_logits[idx].flat] end_logits = [float(x) for x in np_end_logits[idx].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) run_time_used = time.time() - run_states[0].run_time_begin run_speed = run_step / run_time_used avg_loss = np.sum(total_cost) / np.sum(total_num_seqs) scores = OrderedDict() # If none of metrics has been implemented, loss will be used to evaluate. if self.is_test_phase: output_prediction_file = os.path.join(self.config.checkpoint_dir, "predictions.json") output_nbest_file = os.path.join(self.config.checkpoint_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(self.config.checkpoint_dir, "null_odds.json") all_examples = self.data_reader.all_examples[self.phase] all_features = self.data_reader.all_features[self.phase] write_predictions( all_examples=all_examples, all_features=all_features, all_results=all_results, n_best_size=self.n_best_size, max_answer_length=self.max_answer_length, do_lower_case=True, output_prediction_file=output_prediction_file, output_nbest_file=output_nbest_file, output_null_log_odds_file=output_null_log_odds_file, version_2_with_negative=self.version_2_with_negative, null_score_diff_threshold=self.null_score_diff_threshold, is_english=self.is_english) if self.phase == 'val' or self.phase == 'dev': with open( self.data_reader.dataset.dev_file, 'r', encoding="utf8") as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json['data'] elif self.phase == 'test': with open( self.data_reader.dataset.test_file, 'r', encoding="utf8") as dataset_file: dataset_json = json.load(dataset_file) dataset = dataset_json['data'] else: raise Exception("Error phase: %s when runing _calculate_metrics" % self.phase) with open( output_prediction_file, 'r', encoding="utf8") as prediction_file: predictions = json.load(prediction_file) if self.sub_task == "squad": scores = squad1_evaluate.evaluate(dataset, predictions) elif self.sub_task == "squad2.0": with open( output_null_log_odds_file, 'r', encoding="utf8") as odds_file: na_probs = json.load(odds_file) scores = squad2_evaluate.evaluate(dataset, predictions, na_probs) elif self.sub_task in ["cmrc2018", "drcd"]: scores = cmrc2018_evaluate.get_eval(dataset, predictions) return scores, avg_loss, run_speed def _predict_end_event(self, run_states): all_results = [] RawResult = collections.namedtuple( "RawResult", ["unique_id", "start_logits", "end_logits"]) for run_state in run_states: np_unique_ids = run_state.run_results[0] np_start_logits = run_state.run_results[1] np_end_logits = run_state.run_results[2] for idx in range(np_unique_ids.shape[0]): unique_id = int(np_unique_ids[idx]) start_logits = [float(x) for x in np_start_logits[idx].flat] end_logits = [float(x) for x in np_end_logits[idx].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) # If none of metrics has been implemented, loss will be used to evaluate. output_prediction_file = os.path.join(self.config.checkpoint_dir, "predict_predictions.json") output_nbest_file = os.path.join(self.config.checkpoint_dir, "predict_nbest_predictions.json") output_null_log_odds_file = os.path.join(self.config.checkpoint_dir, "predict_null_odds.json") all_examples = self.data_reader.all_examples[self.phase] all_features = self.data_reader.all_features[self.phase] write_predictions( all_examples=all_examples, all_features=all_features, all_results=all_results, n_best_size=self.n_best_size, max_answer_length=self.max_answer_length, do_lower_case=True, output_prediction_file=output_prediction_file, output_nbest_file=output_nbest_file, output_null_log_odds_file=output_null_log_odds_file, version_2_with_negative=self.version_2_with_negative, null_score_diff_threshold=self.null_score_diff_threshold, is_english=self.is_english) logger.info("PaddleHub predict finished.") logger.info("You can see the prediction in %s" % output_prediction_file)