#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ import argparse import ast import paddle.fluid as fluid import paddlehub as hub hub.common.logger.logger.setLevel("INFO") # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False") parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate used to train with warmup.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--warmup_proportion", type=float, default=0.0, help="Warmup proportion params for warmup strategy") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=384, help="Number of words of the longest seqence.") parser.add_argument("--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.") parser.add_argument("--n_best_size", type=int, default=20,help="The total number of n-best predictions to generate in the ""nbest_predictions.json output file.") parser.add_argument("--max_answer_length", type=int, default=30,help="The maximum length of an answer that can be generated. This is needed ""because the start and end predictions are not conditioned on one another.") parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.") parser.add_argument("--use_pyreader", type=ast.literal_eval, default=False, help="Whether use pyreader to feed data.") parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.") parser.add_argument("--dataset", type=str, default="squad", help="Support squad, squad2.0, drcd and cmrc2018") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Download dataset and use ReadingComprehensionReader to read dataset if args.dataset == "squad": dataset = hub.dataset.SQUAD(version_2_with_negative=False) module = hub.Module(name="bert_uncased_L-12_H-768_A-12") elif args.dataset == "squad2.0" or args.dataset == "squad2": args.dataset = "squad2.0" dataset = hub.dataset.SQUAD(version_2_with_negative=True) module = hub.Module(name="bert_uncased_L-12_H-768_A-12") elif args.dataset == "drcd": dataset = hub.dataset.DRCD() module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16") elif args.dataset == "cmrc2018": dataset = hub.dataset.CMRC2018() module = hub.Module(name="roberta_wwm_ext_chinese_L-24_H-1024_A-16") else: raise Exception( "Only support datasets: squad, squad2.0, drcd and cmrc2018") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) reader = hub.reader.ReadingComprehensionReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len, doc_stride=128, max_query_length=64) seq_output = outputs["sequence_output"] # Setup feed list for data feeder feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Select finetune strategy, setup config and finetune strategy = hub.AdamWeightDecayStrategy( weight_decay=args.weight_decay, learning_rate=args.learning_rate, warmup_proportion=args.warmup_proportion, lr_scheduler="linear_decay") # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( log_interval=10, eval_interval=300, save_ckpt_interval=10000, use_pyreader=args.use_pyreader, use_data_parallel=args.use_data_parallel, use_cuda=args.use_gpu, num_epoch=args.num_epoch, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, enable_memory_optim=True, strategy=strategy) # Define a reading comprehension finetune task by PaddleHub's API reading_comprehension_task = hub.ReadingComprehensionTask( data_reader=reader, feature=seq_output, feed_list=feed_list, config=config, sub_task=args.dataset, ) # Finetune by PaddleHub's API reading_comprehension_task.finetune_and_eval()