# coding:utf-8 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Callable import paddle import numpy as np from PIL import Image import paddlehub.env as hubenv from paddlehub.utils.download import download_data from paddlehub.datasets.base_seg_dataset import SegDataset @download_data(url='https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip') class OpticDiscSeg(SegDataset): """ OpticDiscSeg dataset is extraced from iChallenge-AMD (https://ai.baidu.com/broad/subordinate?dataset=amd). Args: transforms (Callable): Transforms for image. mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. edge (bool, optional): Whether to compute edge while training. Default: False """ def __init__(self, transforms: Callable = None, mode: str = 'train'): self.transforms = transforms mode = mode.lower() self.mode = mode self.file_list = list() self.num_classes = 2 self.ignore_index = 255 if mode not in ['train', 'val', 'test']: raise ValueError( "`mode` should be 'train', 'val' or 'test', but got {}.".format( mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") if mode == 'train': file_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', 'train_list.txt') elif mode == 'test': file_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', 'test_list.txt') else: file_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', 'val_list.txt') with open(file_path, 'r') as f: for line in f: items = line.strip().split() if len(items) != 2: if mode == 'train' or mode == 'val': raise Exception( "File list format incorrect! It should be" " image_name label_name\\n") image_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', items[0]) grt_path = None else: image_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', items[0]) grt_path = os.path.join(hubenv.DATA_HOME, 'optic_disc_seg', items[1]) self.file_list.append([image_path, grt_path])