# coding:utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import os import base64 import argparse from typing import List, Union from collections import OrderedDict import cv2 import paddle import numpy as np import paddle.nn as nn import paddle.nn.functional as F from PIL import Image import paddlehub.vision.transforms as T import paddlehub.vision.functional as Func from paddlehub.vision import utils from paddlehub.module.module import serving, RunModule, runnable from paddlehub.utils.utils import base64_to_cv2, cv2_to_base64 class ImageServing(object): @serving def serving_method(self, images: List[str], **kwargs) -> List[dict]: """Run as a service.""" images_decode = [base64_to_cv2(image) for image in images] results = self.predict(images=images_decode, **kwargs) return results class ImageClassifierModule(RunModule, ImageServing): def training_step(self, batch: int, batch_idx: int) -> dict: ''' One step for training, which should be called as forward computation. Args: batch(list[paddle.Tensor]) : The one batch data, which contains images and labels. batch_idx(int) : The index of batch. Returns: results(dict) : The model outputs, such as loss and metrics. ''' return self.validation_step(batch, batch_idx) def validation_step(self, batch: int, batch_idx: int) -> dict: ''' One step for validation, which should be called as forward computation. Args: batch(list[paddle.Tensor]) : The one batch data, which contains images and labels. batch_idx(int) : The index of batch. Returns: results(dict) : The model outputs, such as metrics. ''' images = batch[0] labels = paddle.unsqueeze(batch[1], axis=-1) preds, feature = self(images) loss, _ = F.softmax_with_cross_entropy(preds, labels, return_softmax=True, axis=1) loss = paddle.mean(loss) acc = paddle.metric.accuracy(preds, labels) return {'loss': loss, 'metrics': {'acc': acc}} def predict(self, images: List[np.ndarray], batch_size: int = 1, top_k: int = 1) -> List[dict]: ''' Predict images Args: images(list[numpy.ndarray]) : Images to be predicted, consist of np.ndarray in bgr format. batch_size(int) : Batch size for prediciton. top_k(int) : Output top k result of each image. Returns: results(list[dict]) : The prediction result of each input image ''' self.eval() res = [] total_num = len(images) loop_num = int(np.ceil(total_num / batch_size)) for iter_id in range(loop_num): batch_data = [] handle_id = iter_id * batch_size for image_id in range(batch_size): try: image = self.transforms(images[handle_id + image_id]) batch_data.append(image) except: pass batch_image = np.array(batch_data) preds, feature = self(paddle.to_tensor(batch_image)) preds = F.softmax(preds, axis=1).numpy() pred_idxs = np.argsort(preds)[:, ::-1][:, :top_k] for i, pred in enumerate(pred_idxs): res_dict = {} for k in pred: class_name = self.labels[int(k)] res_dict[class_name] = preds[i][k] res.append(res_dict) return res @serving def serving_method(self, images: list, top_k: int, **kwargs): """ Run as a service. """ top_k = int(top_k) images_decode = [base64_to_cv2(image) for image in images] resdicts = self.predict(images=images_decode, top_k=top_k,**kwargs) final={} for resdict in resdicts: for key, value in resdict.items(): resdict[key] = float(value) final['data'] = resdicts return final @runnable def run_cmd(self, argvs: list): """ Run as a command. """ self.parser = argparse.ArgumentParser( description="Run the {} module.".format(self.name), prog='hub run {}'.format(self.name), usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group( title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description= "Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) results = self.predict( images=[args.input_path], top_k=args.top_k) return results def add_module_config_arg(self): """ Add the command config options. """ self.arg_config_group.add_argument( '--top_k', type=int, default=1, help="top_k classification result.") def add_module_input_arg(self): """ Add the command input options. """ self.arg_input_group.add_argument( '--input_path', type=str, help="path to image.") class ImageColorizeModule(RunModule, ImageServing): def training_step(self, batch: int, batch_idx: int) -> dict: ''' One step for training, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images and labels. batch_idx(int): The index of batch. Returns: results(dict): The model outputs, such as loss and metrics. ''' return self.validation_step(batch, batch_idx) def validation_step(self, batch: int, batch_idx: int) -> dict: ''' One step for validation, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images and labels. batch_idx(int): The index of batch. Returns: results(dict) : The model outputs, such as metrics. ''' img = self.preprocess(batch[0]) out_class, out_reg = self(img['A'], img['hint_B'], img['mask_B']) # loss criterionCE = nn.loss.CrossEntropyLoss() loss_ce = criterionCE(out_class, img['real_B_enc'][:, 0, :, :]) loss_G_L1_reg = paddle.sum(paddle.abs(img['B'] - out_reg), axis=1, keepdim=True) loss_G_L1_reg = paddle.mean(loss_G_L1_reg) loss = loss_ce + loss_G_L1_reg return {'loss': loss} def predict(self, images: list, visualization: bool = True, batch_size: int = 1, save_path: str = 'colorization'): ''' Colorize images Args: images(list[str|np.ndarray]) : Images path or BGR image to be colorized. visualization(bool): Whether to save colorized images. batch_size(int): Batch size for prediciton. save_path(str) : Path to save colorized images. Returns: res(list[dict]) : The prediction result of each input image ''' self.eval() lab2rgb = T.LAB2RGB() res = [] total_num = len(images) loop_num = int(np.ceil(total_num / batch_size)) for iter_id in range(loop_num): batch_data = [] handle_id = iter_id * batch_size for image_id in range(batch_size): try: image = self.transforms(images[handle_id + image_id]) batch_data.append(image) except: pass batch_data = np.array(batch_data) im = self.preprocess(batch_data) out_class, out_reg = self(im['A'], im['hint_B'], im['mask_B']) visual_ret = OrderedDict() for i in range(im['A'].shape[0]): gray = lab2rgb(np.concatenate((im['A'].numpy(), np.zeros(im['B'].shape)), axis=1))[i] gray = np.clip(np.transpose(gray, (1, 2, 0)), 0, 1) * 255 visual_ret['gray'] = gray.astype(np.uint8) hint = lab2rgb(np.concatenate((im['A'].numpy(), im['hint_B'].numpy()), axis=1))[i] hint = np.clip(np.transpose(hint, (1, 2, 0)), 0, 1) * 255 visual_ret['hint'] = hint.astype(np.uint8) real = lab2rgb(np.concatenate((im['A'].numpy(), im['B'].numpy()), axis=1))[i] real = np.clip(np.transpose(real, (1, 2, 0)), 0, 1) * 255 visual_ret['real'] = real.astype(np.uint8) fake = lab2rgb(np.concatenate((im['A'].numpy(), out_reg.numpy()), axis=1))[i] fake = np.clip(np.transpose(fake, (1, 2, 0)), 0, 1) * 255 visual_ret['fake_reg'] = fake.astype(np.uint8) if visualization: if isinstance(images[handle_id + i], str): org_img = cv2.imread(images[handle_id + i]).astype('float32') else: org_img = images[handle_id + i] h, w, c = org_img.shape fake_name = "fake_" + str(time.time()) + ".png" if not os.path.exists(save_path): os.mkdir(save_path) fake_path = os.path.join(save_path, fake_name) visual_gray = Image.fromarray(visual_ret['fake_reg']) visual_gray = visual_gray.resize((w, h), Image.BILINEAR) visual_gray.save(fake_path) res.append(visual_ret) return res @serving def serving_method(self, images: list, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images] visual = self.predict(images=images_decode, **kwargs) final={} for i, visual_ret in enumerate(visual): h, w, c = images_decode[i].shape for key, value in visual_ret.items(): value = cv2.resize(cv2.cvtColor(value,cv2.COLOR_RGB2BGR), (w, h), cv2.INTER_NEAREST) visual_ret[key] = cv2_to_base64(value) final['data'] = visual return final @runnable def run_cmd(self, argvs: list): """ Run as a command. """ self.parser = argparse.ArgumentParser( description="Run the {} module.".format(self.name), prog='hub run {}'.format(self.name), usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group( title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description= "Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) results = self.predict( images=[args.input_path], visualization=args.visualization, save_path=args.output_dir) return results def add_module_config_arg(self): """ Add the command config options. """ self.arg_config_group.add_argument( '--output_dir', type=str, default='colorization', help="save visualization result.") self.arg_config_group.add_argument( '--visualization', type=bool, default=True, help="whether to save output as images.") def add_module_input_arg(self): """ Add the command input options. """ self.arg_input_group.add_argument( '--input_path', type=str, help="path to image.") class Yolov3Module(RunModule, ImageServing): def training_step(self, batch: int, batch_idx: int) -> dict: ''' One step for training, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores. batch_idx(int): The index of batch. Returns: results(dict): The model outputs, such as loss. ''' return self.validation_step(batch, batch_idx) def validation_step(self, batch: int, batch_idx: int) -> dict: ''' One step for validation, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images, ground truth boxes, labels and scores. batch_idx(int): The index of batch. Returns: results(dict) : The model outputs, such as metrics. ''' img = batch[0].astype('float32') gtbox = batch[1].astype('float32') gtlabel = batch[2].astype('int32') gtscore = batch[3].astype("float32") losses = [] outputs = self(img) self.downsample = 32 for i, out in enumerate(outputs): anchor_mask = self.anchor_masks[i] loss = F.yolov3_loss( x=out, gt_box=gtbox, gt_label=gtlabel, gt_score=gtscore, anchors=self.anchors, anchor_mask=anchor_mask, class_num=self.class_num, ignore_thresh=self.ignore_thresh, downsample_ratio=32, use_label_smooth=False) losses.append(paddle.mean(loss)) self.downsample //= 2 return {'loss': sum(losses)} def predict(self, imgpath: str, filelist: str, visualization: bool = True, save_path: str = 'result'): ''' Detect images Args: imgpath(str): Image path . filelist(str): Path to get label name. visualization(bool): Whether to save result image. save_path(str) : Path to save detected images. Returns: boxes(np.ndarray): Predict box information. scores(np.ndarray): Predict score. labels(np.ndarray): Predict labels. ''' self.eval() boxes = [] scores = [] self.downsample = 32 im = self.transform(imgpath) h, w, c = utils.img_shape(imgpath) im_shape = paddle.to_tensor(np.array([[h, w]]).astype('int32')) label_names = utils.get_label_infos(filelist) img_data = paddle.to_tensor(np.array([im]).astype('float32')) outputs = self(img_data) for i, out in enumerate(outputs): anchor_mask = self.anchor_masks[i] mask_anchors = [] for m in anchor_mask: mask_anchors.append((self.anchors[2 * m])) mask_anchors.append(self.anchors[2 * m + 1]) box, score = F.yolo_box( x=out, img_size=im_shape, anchors=mask_anchors, class_num=self.class_num, conf_thresh=self.valid_thresh, downsample_ratio=self.downsample, name="yolo_box" + str(i)) boxes.append(box) scores.append(paddle.transpose(score, perm=[0, 2, 1])) self.downsample //= 2 yolo_boxes = paddle.concat(boxes, axis=1) yolo_scores = paddle.concat(scores, axis=2) pred = F.multiclass_nms( bboxes=yolo_boxes, scores=yolo_scores, score_threshold=self.valid_thresh, nms_top_k=self.nms_topk, keep_top_k=self.nms_posk, nms_threshold=self.nms_thresh, background_label=-1) bboxes = pred.numpy() labels = bboxes[:, 0].astype('int32') scores = bboxes[:, 1].astype('float32') boxes = bboxes[:, 2:].astype('float32') if visualization: if not os.path.exists(save_path): os.mkdir(save_path) utils.draw_boxes_on_image(imgpath, boxes, scores, labels, label_names, 0.5, save_path) return boxes, scores, labels class StyleTransferModule(RunModule, ImageServing): def training_step(self, batch: int, batch_idx: int) -> dict: ''' One step for training, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images and labels. batch_idx(int): The index of batch. Returns: results(dict) : The model outputs, such as loss and metrics. ''' return self.validation_step(batch, batch_idx) def validation_step(self, batch: int, batch_idx: int) -> dict: ''' One step for validation, which should be called as forward computation. Args: batch(list[paddle.Tensor]): The one batch data, which contains images and labels. batch_idx(int): The index of batch. Returns: results(dict) : The model outputs, such as metrics. ''' mse_loss = nn.MSELoss() N, C, H, W = batch[0].shape batch[1] = batch[1][0].unsqueeze(0) self.setTarget(batch[1]) y = self(batch[0]) xc = paddle.to_tensor(batch[0].numpy().copy()) y = utils.subtract_imagenet_mean_batch(y) xc = utils.subtract_imagenet_mean_batch(xc) features_y = self.getFeature(y) features_xc = self.getFeature(xc) f_xc_c = paddle.to_tensor(features_xc[1].numpy(), stop_gradient=True) content_loss = mse_loss(features_y[1], f_xc_c) batch[1] = utils.subtract_imagenet_mean_batch(batch[1]) features_style = self.getFeature(batch[1]) gram_style = [utils.gram_matrix(y) for y in features_style] style_loss = 0. for m in range(len(features_y)): gram_y = utils.gram_matrix(features_y[m]) gram_s = paddle.to_tensor(np.tile(gram_style[m].numpy(), (N, 1, 1, 1))) style_loss += mse_loss(gram_y, gram_s[:N, :, :]) loss = content_loss + style_loss return {'loss': loss, 'metrics': {'content gap': content_loss, 'style gap': style_loss}} def predict(self, origin: list, style: Union[str, np.ndarray], batch_size: int = 1, visualization: bool = True, save_path: str = 'style_tranfer'): ''' Colorize images Args: origin(list[str|np.array]): Content image path or BGR image. style(str|np.array): Style image path or BGR image. batch_size(int): Batch size for prediciton. visualization(bool): Whether to save colorized images. save_path(str) : Path to save colorized images. Returns: output(list[np.ndarray]) : The style transformed images with bgr mode. ''' self.eval() style = paddle.to_tensor(self.transform(style).astype('float32')) style = style.unsqueeze(0) res = [] total_num = len(origin) loop_num = int(np.ceil(total_num / batch_size)) for iter_id in range(loop_num): batch_data = [] handle_id = iter_id * batch_size for image_id in range(batch_size): try: image = self.transform(origin[handle_id + image_id]) batch_data.append(image.astype('float32')) except: pass batch_image = np.array(batch_data) content = paddle.to_tensor(batch_image) self.setTarget(style) output = self(content) for num in range(batch_size): out = paddle.clip(output[num].transpose((1, 2, 0)), 0, 255).numpy().astype(np.uint8) res.append(out) if visualization: style_name = "style_" + str(time.time()) + ".png" if not os.path.exists(save_path): os.mkdir(save_path) path = os.path.join(save_path, style_name) cv2.imwrite(path, out) return res @serving def serving_method(self, images: list, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images[0]] style_decode = base64_to_cv2(images[1]) results = self.predict(origin=images_decode, style=style_decode, **kwargs) final={} final['data'] = [cv2_to_base64(result) for result in results] return final @runnable def run_cmd(self, argvs: list): """ Run as a command. """ self.parser = argparse.ArgumentParser( description="Run the {} module.".format(self.name), prog='hub run {}'.format(self.name), usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group( title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description= "Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) results = self.predict( origin=[args.input_path], style=args.style_path, save_path=args.output_dir, visualization=args.visualization) return results def add_module_config_arg(self): """ Add the command config options. """ self.arg_config_group.add_argument( '--output_dir', type=str, default='style_tranfer', help="The directory to save output images.") self.arg_config_group.add_argument( '--visualization', type=bool, default=True, help="whether to save output as images.") def add_module_input_arg(self): """ Add the command input options. """ self.arg_input_group.add_argument( '--input_path', type=str, help="path to image.") self.arg_input_group.add_argument( '--style_path', type=str, help="path to style image.")