# coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import json import os import re import six import paddle import numpy as np import paddle.fluid as fluid import paddlehub as hub from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor from paddlehub.common import paddle_helper, tmp_dir from paddlehub.common.logger import logger from paddlehub.common.utils import sys_stdin_encoding, version_compare from paddlehub.io.parser import txt_parser from paddlehub.module.module import runnable class DataFormatError(Exception): def __init__(self, *args): self.args = args class NLPBaseModule(hub.Module): def _initialize(self): """ initialize with the necessary elements This method must be overrided. """ raise NotImplementedError() def get_vocab_path(self): """ Get the path to the vocabulary whih was used to pretrain Returns: self.vocab_path(str): the path to vocabulary """ return self.vocab_path class NLPPredictionModule(NLPBaseModule): def _set_config(self): """ predictor config setting """ cpu_config = AnalysisConfig(self.pretrained_model_path) cpu_config.disable_glog_info() cpu_config.disable_gpu() self.cpu_predictor = create_paddle_predictor(cpu_config) try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) use_gpu = True except: use_gpu = False if use_gpu: gpu_config = AnalysisConfig(self.pretrained_model_path) gpu_config.disable_glog_info() gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0) self.gpu_predictor = create_paddle_predictor(gpu_config) def texts2tensor(self, texts): """ Tranform the texts(dict) to PaddleTensor Args: texts(list): each element is a dict that must have a named 'processed' key whose value is word_ids, such as texts = [{'processed': [23, 89, 43, 906]}] Returns: tensor(PaddleTensor): tensor with texts data """ lod = [0] data = [] for i, text in enumerate(texts): data += text['processed'] lod.append(len(text['processed']) + lod[i]) tensor = PaddleTensor(np.array(data).astype('int64')) tensor.name = "words" tensor.lod = [lod] tensor.shape = [lod[-1], 1] return tensor def to_unicode(self, texts): """ Convert each element's type(str) of texts(list) to unicode in python2.7 Args: texts(list): each element's type is str in python2.7 Returns: texts(list): each element's type is unicode in python2.7 """ if six.PY2: unicode_texts = [] for text in texts: if isinstance(text, six.string_types): unicode_texts.append( text.decode(sys_stdin_encoding()).decode("utf8")) else: unicode_texts.append(text) texts = unicode_texts return texts @runnable def run_cmd(self, argvs): """ Run as a command """ self.parser = argparse.ArgumentParser( description='Run the %s module.' % self.name, prog='hub run %s' % self.name, usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group( title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description= "Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) try: input_data = self.check_input_data(args) except DataFormatError and RuntimeError: self.parser.print_help() return None results = self.predict( texts=input_data, use_gpu=args.use_gpu, batch_size=args.batch_size) return results def add_module_config_arg(self): """ Add the command config options """ self.arg_config_group.add_argument( '--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU for prediction") self.arg_config_group.add_argument( '--batch_size', type=int, default=1, help="batch size for prediction") def add_module_input_arg(self): """ Add the command input options """ self.arg_input_group.add_argument( '--input_file', type=str, default=None, help="file contain input data") self.arg_input_group.add_argument( '--input_text', type=str, default=None, help="text to predict") def check_input_data(self, args): input_data = [] if args.input_file: if not os.path.exists(args.input_file): print("File %s is not exist." % args.input_file) raise RuntimeError else: input_data = txt_parser.parse(args.input_file, use_strip=True) elif args.input_text: if args.input_text.strip() != '': if six.PY2: input_data = [ args.input_text.decode( sys_stdin_encoding()).decode("utf8") ] else: input_data = [args.input_text] else: print( "ERROR: The input data is inconsistent with expectations.") if input_data == []: print("ERROR: The input data is inconsistent with expectations.") raise DataFormatError return input_data class _TransformerEmbeddingTask(hub.BaseTask): def __init__(self, pooled_feature, seq_feature, feed_list, data_reader, config=None): main_program = pooled_feature.block.program super(_TransformerEmbeddingTask, self).__init__( main_program=main_program, data_reader=data_reader, feed_list=feed_list, config=config, metrics_choices=[]) self.pooled_feature = pooled_feature self.seq_feature = seq_feature def _build_net(self): return [self.pooled_feature, self.seq_feature] def _postprocessing(self, run_states): results = [] for batch_state in run_states: batch_result = batch_state.run_results batch_pooled_features = batch_result[0] batch_seq_features = batch_result[1] for i in range(len(batch_pooled_features)): results.append( [batch_pooled_features[i], batch_seq_features[i]]) return results class TransformerModule(NLPBaseModule): """ Tranformer Module base class can be used by BERT, ERNIE, RoBERTa and so on. """ def __init__(self, name=None, directory=None, module_dir=None, version=None, max_seq_len=128, **kwargs): if not directory: return super(TransformerModule, self).__init__( name=name, directory=directory, module_dir=module_dir, version=version, **kwargs) self.max_seq_len = max_seq_len if version_compare(paddle.__version__, '1.8.0'): with tmp_dir() as _dir: input_dict, output_dict, program = self.context( max_seq_len=max_seq_len) fluid.io.save_inference_model( dirname=_dir, main_program=program, feeded_var_names=[ input_dict['input_ids'].name, input_dict['position_ids'].name, input_dict['segment_ids'].name, input_dict['input_mask'].name ], target_vars=[ output_dict["pooled_output"], output_dict["sequence_output"] ], executor=fluid.Executor(fluid.CPUPlace())) with fluid.dygraph.guard(): self.model_runner = fluid.dygraph.StaticModelRunner(_dir) def init_pretraining_params(self, exe, pretraining_params_path, main_program): assert os.path.exists( pretraining_params_path ), "[%s] cann't be found." % pretraining_params_path def existed_params(var): if not isinstance(var, fluid.framework.Parameter): return False return os.path.exists( os.path.join(pretraining_params_path, var.name)) fluid.io.load_vars( exe, pretraining_params_path, main_program=main_program, predicate=existed_params) logger.info("Load pretraining parameters from {}.".format( pretraining_params_path)) def param_prefix(self): return "@HUB_%s@" % self.name def context( self, max_seq_len=None, trainable=True, ): """ get inputs, outputs and program from pre-trained module Args: max_seq_len (int): the max sequence length trainable (bool): optimizing the pre-trained module params during training or not Returns: inputs, outputs, program. The inputs is a dict with keys named input_ids, position_ids, segment_ids, input_mask and task_ids The outputs is a dict with two keys named pooled_output and sequence_output. """ if not max_seq_len: max_seq_len = self.max_seq_len assert max_seq_len <= self.MAX_SEQ_LEN and max_seq_len >= 1, "max_seq_len({}) should be in the range of [1, {}]".format( max_seq_len, self.MAX_SEQ_LEN) module_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(module_program, startup_program): with fluid.unique_name.guard("@HUB_%s@" % self.name): input_ids = fluid.layers.data( name='input_ids', shape=[-1, max_seq_len, 1], dtype='int64', lod_level=0) position_ids = fluid.layers.data( name='position_ids', shape=[-1, max_seq_len, 1], dtype='int64', lod_level=0) segment_ids = fluid.layers.data( name='segment_ids', shape=[-1, max_seq_len, 1], dtype='int64', lod_level=0) input_mask = fluid.layers.data( name='input_mask', shape=[-1, max_seq_len, 1], dtype='float32', lod_level=0) pooled_output, sequence_output = self.net( input_ids, position_ids, segment_ids, input_mask) inputs = { 'input_ids': input_ids, 'position_ids': position_ids, 'segment_ids': segment_ids, 'input_mask': input_mask, } outputs = { "pooled_output": pooled_output, "sequence_output": sequence_output, 0: pooled_output, 1: sequence_output } place = fluid.CPUPlace() exe = fluid.Executor(place) # To be compatible with the module v1 vars = filter(lambda var: "tmp" not in var, list(module_program.global_block().vars.keys())[4:]) paddle_helper.add_vars_prefix( program=module_program, prefix=self.param_prefix(), vars=vars) self.init_pretraining_params( exe, self.params_path, main_program=module_program) self.params_layer = {} for param in module_program.global_block().iter_parameters(): param.trainable = trainable match = re.match(r'.*layer_(\d+).*', param.name) if match: # layer num begins from 0 layer = match.group(1) self.params_layer[param.name] = int(layer) return inputs, outputs, module_program def get_embedding(self, texts, max_seq_len=512, use_gpu=False, batch_size=1): """ get pooled_output and sequence_output for input texts. Warnings: this method depends on Paddle Inference Library, it may not work properly in PaddlePaddle <= 1.6.2. Args: texts (list): each element is a text sample, each sample include text_a and text_b where text_b can be omitted. for example: [[sample0_text_a, sample0_text_b], [sample1_text_a, sample1_text_b], ...] max_seq_len (int): the max sequence length. use_gpu (bool): use gpu or not, default False. batch_size (int): the data batch size, default 1. Returns: pooled_outputs(list): its element is a numpy array, the first feature of each text sample. sequence_outputs(list): its element is a numpy array, the whole features of each text sample. """ if not hasattr( self, "emb_job" ) or self.emb_job["batch_size"] != batch_size or self.emb_job[ "use_gpu"] != use_gpu: inputs, outputs, program = self.context( trainable=True, max_seq_len=max_seq_len) reader = hub.reader.ClassifyReader( dataset=None, vocab_path=self.get_vocab_path(), max_seq_len=max_seq_len, sp_model_path=self.get_spm_path() if hasattr( self, "get_spm_path") else None, word_dict_path=self.get_word_dict_path() if hasattr( self, "word_dict_path") else None) feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] pooled_feature, seq_feature = outputs["pooled_output"], outputs[ "sequence_output"] config = hub.RunConfig( use_data_parallel=False, use_cuda=use_gpu, batch_size=batch_size) self.emb_job = {} self.emb_job["task"] = _TransformerEmbeddingTask( pooled_feature=pooled_feature, seq_feature=seq_feature, feed_list=feed_list, data_reader=reader, config=config, ) self.emb_job["batch_size"] = batch_size self.emb_job["use_gpu"] = use_gpu return self.emb_job["task"].predict( data=texts, return_result=True, accelerate_mode=True) def get_spm_path(self): if hasattr(self, "spm_path"): return self.spm_path else: return None def get_word_dict_path(self): if hasattr(self, "word_dict_path"): return self.word_dict_path else: return None def get_params_layer(self): if not hasattr(self, "params_layer"): raise AttributeError( "The module context has not been initialized. " "Please call context() before using get_params_layer") return self.params_layer def forward(self, input_ids, position_ids, segment_ids, input_mask): if version_compare(paddle.__version__, '1.8.0'): pooled_output, sequence_output = self.model_runner( input_ids, position_ids, segment_ids, input_mask) return { 'pooled_output': pooled_output, 'sequence_output': sequence_output } else: raise RuntimeError( '{} only support dynamic graph mode in paddle >= 1.8.0'.format( self.name))