# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from collections import OrderedDict import base64 import cv2 import numpy as np from PIL import Image __all__ = ['base64_to_cv2', 'postprocess'] def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def check_dir(dir_path): """ Create directory to save processed image. Args: dir_path (str): directory path to save images. """ if not os.path.exists(dir_path): os.makedirs(dir_path) elif os.path.isfile(dir_path): os.remove(dir_path) os.makedirs(dir_path) def get_save_image_name(org_im, org_im_path, output_dir): """ Get save image name from source image path. """ # name prefix of original image org_im_name = os.path.split(org_im_path)[-1] im_prefix = os.path.splitext(org_im_name)[0] # extension img = Image.fromarray(org_im[:, :, ::-1]) if img.mode == 'RGBA': ext = '.png' elif img.mode == 'RGB': ext = '.jpg' # save image path save_im_path = os.path.join(output_dir, im_prefix + ext) if os.path.exists(save_im_path): save_im_path = os.path.join(output_dir, im_prefix + 'time={}'.format(int(time.time())) + ext) return save_im_path def clip_bbox(bbox, img_height, img_width): bbox['left'] = int(max(min(bbox['left'], img_width), 0.)) bbox['top'] = int(max(min(bbox['top'], img_height), 0.)) bbox['right'] = int(max(min(bbox['right'], img_width), 0.)) bbox['bottom'] = int(max(min(bbox['bottom'], img_height), 0.)) return bbox def postprocess(data_out, org_im, org_im_path, image_height, image_width, output_dir, visualization, shrink, confs_threshold): """ Postprocess output of network. one image at a time. Args: data_out (numpy.ndarray): output of network. org_im (numpy.ndarray): original image. org_im_path (list): path of riginal image. image_height (int): height of preprocessed image. image_width (int): width of preprocessed image. output_dir (str): output directory to store image. visualization (bool): whether to save image or not. shrink (float): parameter to control the resize scale in preprocess. confs_threshold (float): confidence threshold. Returns: output (dict): keys are 'data' and 'path', the correspoding values are: data (list[dict]): 5 keys, where 'left', 'top', 'right', 'bottom' are the coordinate of detection bounding box, 'confidence' is the confidence this bbox. path (str): The path of original image. """ output = dict() output['data'] = list() output['path'] = org_im_path for each_data in data_out: # each_data is a list: [label, confidence, left, top, right, bottom] if each_data[1] > confs_threshold: dt_bbox = dict() dt_bbox['confidence'] = float(each_data[1]) dt_bbox['left'] = image_width * each_data[2] / shrink dt_bbox['top'] = image_height * each_data[3] / shrink dt_bbox['right'] = image_width * each_data[4] / shrink dt_bbox['bottom'] = image_height * each_data[5] / shrink dt_bbox = clip_bbox(dt_bbox, org_im.shape[0], org_im.shape[1]) output['data'].append(dt_bbox) if visualization: check_dir(output_dir) save_im_path = get_save_image_name(org_im, org_im_path, output_dir) im_out = org_im.copy() if len(output['data']) > 0: for bbox in output['data']: cv2.rectangle(im_out, (bbox['left'], bbox['top']), (bbox['right'], bbox['bottom']), (255, 255, 0), 2) cv2.imwrite(save_im_path, im_out) return output