# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import cv2 import os import numpy as np def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def softmax(x): orig_shape = x.shape if len(x.shape) > 1: tmp = np.max(x, axis=1) x -= tmp.reshape((x.shape[0], 1)) x = np.exp(x) tmp = np.sum(x, axis=1) x /= tmp.reshape((x.shape[0], 1)) else: tmp = np.max(x) x -= tmp x = np.exp(x) tmp = np.sum(x) x /= tmp return x def postprocess(data_out, label_list, top_k): """ Postprocess output of network, one image at a time. Args: data_out (numpy.ndarray): output data of network. label_list (list): list of label. top_k (int): Return top k results. """ output = [] for result in data_out: result_i = softmax(result) output_i = {} indexs = np.argsort(result_i)[::-1][0:top_k] for index in indexs: label = label_list[index] output_i[label] = float(result_i[index]) output.append(output_i) return output