# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import unittest import cv2 import numpy as np import paddle.fluid as fluid import paddlehub as hub pic_dir = '../image_dataset/human_segmentation/image/' imgpath = [ '../image_dataset/human_segmentation/image/ache-adult-depression-expression-41253.jpg', '../image_dataset/human_segmentation/image/allergy-cold-disease-flu-41284.jpg', '../image_dataset/human_segmentation/image/bored-female-girl-people-41321.jpg', '../image_dataset/human_segmentation/image/colors-hairdresser-cutting-colorimetry-159780.jpg', '../image_dataset/human_segmentation/image/pexels-photo-206339.jpg' ] class TestHumanSeg(unittest.TestCase): @classmethod def setUpClass(self): """Prepare the environment once before execution of all tests.\n""" self.human_seg = hub.Module(name="humanseg_mobile") @classmethod def tearDownClass(self): """clean up the environment after the execution of all tests.\n""" self.human_seg = None def setUp(self): "Call setUp() to prepare environment\n" self.test_prog = fluid.Program() def tearDown(self): "Call tearDown to restore environment.\n" self.test_prog = None def test_single_pic(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] img = cv2.imread(pics_path_list[0]) result = self.human_seg.segment( images=[img], use_gpu=False, visualization=True) print(result[0]['data']) def test_batch(self): with fluid.program_guard(self.test_prog): result = self.human_seg.segment( paths=imgpath, batch_size=2, output_dir='batch_output_hrnet', use_gpu=False, visualization=True) print(result) def test_ndarray(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] pics_ndarray = list() for pic_path in pics_path_list: result = self.human_seg.segment( images=[cv2.imread(pic_path)], output_dir='ndarray_output_hrnet', use_gpu=False, visualization=True) def test_save_inference_model(self): with fluid.program_guard(self.test_prog): self.human_seg.save_inference_model( dirname='humanseg_mobile', combined=True) if __name__ == "__main__": suite = unittest.TestSuite() suite.addTest(TestHumanSeg('test_single_pic')) suite.addTest(TestHumanSeg('test_batch')) suite.addTest(TestHumanSeg('test_ndarray')) suite.addTest(TestHumanSeg('test_save_inference_model')) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)