# -*- coding:utf-8 -*- import numpy as np def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow): """计算光流跟踪匹配点和光流图 输入参数: pre_gray: 上一帧灰度图 cur_gray: 当前帧灰度图 prev_cfd: 上一帧光流图 dl_weights: 融合权重图 disflow: 光流数据结构 返回值: is_track: 光流点跟踪二值图,即是否具有光流点匹配 track_cfd: 光流跟踪图 """ check_thres = 8 h, w = pre_gray.shape[:2] track_cfd = np.zeros_like(prev_cfd) is_track = np.zeros_like(pre_gray) flow_fw = disflow.calc(pre_gray, cur_gray, None) flow_bw = disflow.calc(cur_gray, pre_gray, None) flow_fw = np.round(flow_fw).astype(np.int) flow_bw = np.round(flow_bw).astype(np.int) y_list = np.array(range(h)) x_list = np.array(range(w)) yv, xv = np.meshgrid(y_list, x_list) yv, xv = yv.T, xv.T cur_x = xv + flow_fw[:, :, 0] cur_y = yv + flow_fw[:, :, 1] # 超出边界不跟踪 not_track = (cur_x < 0) + (cur_x >= w) + (cur_y < 0) + (cur_y >= h) flow_bw[~not_track] = flow_bw[cur_y[~not_track], cur_x[~not_track]] not_track += (np.square(flow_fw[:, :, 0] + flow_bw[:, :, 0]) + np.square(flow_fw[:, :, 1] + flow_bw[:, :, 1])) >= check_thres track_cfd[cur_y[~not_track], cur_x[~not_track]] = prev_cfd[~not_track] is_track[cur_y[~not_track], cur_x[~not_track]] = 1 not_flow = np.all( np.abs(flow_fw) == 0, axis=-1) * np.all( np.abs(flow_bw) == 0, axis=-1) dl_weights[cur_y[not_flow], cur_x[not_flow]] = 0.05 return track_cfd, is_track, dl_weights def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track): """光流追踪图和人像分割结构融合 输入参数: track_cfd: 光流追踪图 dl_cfd: 当前帧分割结果 dl_weights: 融合权重图 is_track: 光流点匹配二值图 返回 cur_cfd: 光流跟踪图和人像分割结果融合图 """ fusion_cfd = dl_cfd.copy() is_track = is_track.astype(np.bool) fusion_cfd[is_track] = dl_weights[is_track] * dl_cfd[is_track] + ( 1 - dl_weights[is_track]) * track_cfd[is_track] # 确定区域 index_certain = ((dl_cfd > 0.9) + (dl_cfd < 0.1)) * is_track index_less01 = (dl_weights < 0.1) * index_certain fusion_cfd[index_less01] = 0.3 * dl_cfd[index_less01] + 0.7 * track_cfd[ index_less01] index_larger09 = (dl_weights >= 0.1) * index_certain fusion_cfd[index_larger09] = 0.4 * dl_cfd[index_larger09] + 0.6 * track_cfd[ index_larger09] return fusion_cfd def threshold_mask(img, thresh_bg, thresh_fg): dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg) dst[np.where(dst > 1)] = 1 dst[np.where(dst < 0)] = 0 return dst.astype(np.float32) def postprocess_v(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init): """光流优化 Args: cur_gray : 当前帧灰度图 pre_gray : 前一帧灰度图 pre_cfd :前一帧融合结果 scoremap : 当前帧分割结果 difflow : 光流 is_init : 是否第一帧 Returns: fusion_cfd : 光流追踪图和预测结果融合图 """ h, w = scoremap.shape cur_cfd = scoremap.copy() if is_init: if h <= 64 or w <= 64: disflow.setFinestScale(1) elif h <= 160 or w <= 160: disflow.setFinestScale(2) else: disflow.setFinestScale(3) fusion_cfd = cur_cfd else: weights = np.ones((h, w), np.float32) * 0.3 track_cfd, is_track, weights = human_seg_tracking( prev_gray, cur_gray, pre_cfd, weights, disflow) fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track) return fusion_cfd