# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from flask import Flask, request, render_template
from paddlehub.serving.model_service.base_model_service import cv_module_info
from paddlehub.serving.model_service.base_model_service import nlp_module_info
from paddlehub.serving.model_service.base_model_service import v2_module_info
from paddlehub.common import utils
import functools
import traceback
import time
import os
import base64
import logging
import glob
def gen_result(status, msg, data):
return {"status": status, "msg": msg, "results": data}
def predict_v2_advanced(module_info, input):
serving_method_name = module_info["method_name"]
serving_method = getattr(module_info["module"], serving_method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update(input)
for item in serving_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
try:
output = serving_method(**predict_args)
except Exception as err:
traceback.print_exc()
return gen_result("-1", "Please check data format!", "")
return gen_result("0", "", output)
def predict_nlp(module_info, input_text, req_id, extra=None):
method_name = module_info["method_name"]
predict_method = getattr(module_info["module"], method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": input_text})
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
if module_info["name"] == "lac" and extra.get("user_dict", []) != []:
predict_args.update({"user_dict": extra.get("user_dict", [])[0]})
try:
res = predict_method(**predict_args)
except Exception as err:
traceback.print_exc()
return gen_result("-1", "Please check data format!", "")
finally:
user_dict = extra.get("user_dict", [])
for item in user_dict:
if os.path.exists(item):
os.remove(item)
return gen_result("0", "", res)
def predict_classification(module_info, input_img, id, extra={}):
method_name = module_info["method_name"]
module = module_info["module"]
predict_method = getattr(module, method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": {"image": input_img}})
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
try:
results = predict_method(**predict_args)
except Exception as err:
curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(curr, " - ", err)
return gen_result("-1", "Please check data format!", "")
finally:
for item in input_img:
if os.path.exists(item):
os.remove(item)
return gen_result("0", "", str(results))
def predict_gan(module_info, input_img, id, extra={}):
method_name = module_info["method_name"]
module = module_info["module"]
predict_method = getattr(module, method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": {"image": input_img}})
predict_args["data"].update(extra)
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
results = predict_method(**predict_args)
try:
pass
except Exception as err:
curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(curr, " - ", err)
return gen_result("-1", "Please check data format!", "")
finally:
base64_list = []
results_pack = []
for index in range(len(input_img)):
item = input_img[index]
output_file = results[index].split(" ")[-1]
with open(output_file, "rb") as fp:
b_head = "data:image/" + item.split(".")[-1] + ";base64"
b_body = base64.b64encode(fp.read())
b_body = str(b_body).replace("b'", "").replace("'", "")
b_img = b_head + "," + b_body
base64_list.append(b_img)
results[index] = results[index].replace(id + "_", "")
results[index] = {"path": results[index]}
results[index].update({"base64": b_img})
results_pack.append(results[index])
os.remove(item)
os.remove(output_file)
return gen_result("0", "", str(results_pack))
def predict_mask(module_info, input_img, id, extra=None, r_img=False):
output_folder = "detection_result"
method_name = module_info["method_name"]
module = module_info["module"]
predict_method = getattr(module, method_name)
data_len = len(input_img) if input_img is not None else 0
data = {}
if input_img is not None:
input_img = {"image": input_img}
data.update(input_img)
if extra is not None:
data.update(extra)
r_img = True if "visual_result" in extra.keys() else False
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": data})
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
try:
results = predict_method(**predict_args)
results = utils.handle_mask_results(results, data_len)
except Exception as err:
curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(curr, " - ", err)
return gen_result("-1", "Please check data format!", "")
finally:
base64_list = []
results_pack = []
if input_img is not None:
if r_img is False:
for index in range(len(results)):
results[index]["path"] = ""
results_pack = results
str_id = id + "*"
files_deleted = glob.glob(str_id)
for path in files_deleted:
if os.path.exists(path):
os.remove(path)
else:
input_img = input_img.get("image", [])
for index in range(len(input_img)):
item = input_img[index]
file_path = os.path.join(output_folder, item)
if not os.path.exists(file_path):
results_pack.append(results[index])
os.remove(item)
else:
with open(file_path, "rb") as fp:
b_head = "data:image/" + item.split(
".")[-1] + ";base64"
b_body = base64.b64encode(fp.read())
b_body = str(b_body).replace("b'", "").replace(
"'", "")
b_img = b_head + "," + b_body
base64_list.append(b_img)
results[index]["path"] = results[index]["path"].replace(
id + "_", "") if results[index]["path"] != "" \
else ""
results[index].update({"base64": b_img})
results_pack.append(results[index])
os.remove(item)
os.remove(os.path.join(output_folder, item))
else:
results_pack = results
return gen_result("0", "", str(results_pack))
def predict_object_detection(module_info, input_img, id, extra={}):
output_folder = "detection_result"
method_name = module_info["method_name"]
module = module_info["module"]
predict_method = getattr(module, method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": {"image": input_img}})
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
try:
results = predict_method(**predict_args)
except Exception as err:
curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(curr, " - ", err)
return gen_result("-1", "Please check data format!", "")
finally:
base64_list = []
results_pack = []
for index in range(len(input_img)):
item = input_img[index]
with open(os.path.join(output_folder, item), "rb") as fp:
b_head = "data:image/" + item.split(".")[-1] + ";base64"
b_body = base64.b64encode(fp.read())
b_body = str(b_body).replace("b'", "").replace("'", "")
b_img = b_head + "," + b_body
base64_list.append(b_img)
results[index]["path"] = results[index]["path"].replace(
id + "_", "")
results[index].update({"base64": b_img})
results_pack.append(results[index])
os.remove(item)
os.remove(os.path.join(output_folder, item))
return gen_result("0", "", str(results_pack))
def predict_semantic_segmentation(module_info, input_img, id, extra={}):
method_name = module_info["method_name"]
module = module_info["module"]
predict_method = getattr(module, method_name)
predict_args = module_info["predict_args"].copy()
predict_args.update({"data": {"image": input_img}})
if isinstance(predict_method, functools.partial):
predict_method = predict_method.func
predict_args.update({"sign_name": method_name})
for item in predict_method.__code__.co_varnames:
if item in module_info.keys():
predict_args.update({item: module_info[item]})
try:
results = predict_method(**predict_args)
except Exception as err:
curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(curr, " - ", err)
return gen_result("-1", "Please check data format!", "")
finally:
base64_list = []
results_pack = []
for index in range(len(input_img)):
item = input_img[index]
with open(results[index]["processed"], "rb") as fp:
b_head = "data:image/png;base64"
b_body = base64.b64encode(fp.read())
b_body = str(b_body).replace("b'", "").replace("'", "")
b_img = b_head + "," + b_body
base64_list.append(b_img)
output_file_path = results[index]["processed"]
results[index]["origin"] = results[index]["origin"].replace(
id + "_", "")
results[index]["processed"] = results[index][
"processed"].replace(id + "_", "")
results[index].update({"base64": b_img})
results_pack.append(results[index])
os.remove(item)
if output_file_path != "":
os.remove(output_file_path)
return gen_result("0", "", str(results_pack))
def create_app(init_flag=False, configs=None):
if init_flag is False:
if configs is None:
raise RuntimeError("Lack of necessary configs.")
config_with_file(configs)
app_instance = Flask(__name__)
app_instance.config["JSON_AS_ASCII"] = False
logging.basicConfig()
gunicorn_logger = logging.getLogger('gunicorn.error')
app_instance.logger.handlers = gunicorn_logger.handlers
app_instance.logger.setLevel(gunicorn_logger.level)
@app_instance.route("/", methods=["GET", "POST"])
def index():
return '暂不提供可视化界面,请直接使用脚本进行请求。
No visual ' \
'interface is provided for the time being, please use the' \
' python script to make a request directly.'
@app_instance.before_request
def before_request():
request.data = {"id": utils.md5(request.remote_addr + str(time.time()))}
@app_instance.route("/get/modules", methods=["GET", "POST"])
def get_modules_info():
module_info = {}
if len(nlp_module_info.nlp_modules) > 0:
module_info.update({"nlp_module": [{"Choose...": "Choose..."}]})
for item in nlp_module_info.nlp_modules:
module_info["nlp_module"].append({item: item})
if len(cv_module_info.cv_modules) > 0:
module_info.update({"cv_module": [{"Choose...": "Choose..."}]})
for item in cv_module_info.cv_modules:
module_info["cv_module"].append({item: item})
return {"module_info": module_info}
@app_instance.route("/predict/image/", methods=["POST"])
def predict_image(module_name):
if request.path.split("/")[-1] not in cv_module_info.modules_info:
return {"error": "Module {} is not available.".format(module_name)}
module_info = cv_module_info.get_module_info(module_name)
if module_info["code_version"] == "v2":
results = {}
# results = predict_v2(module_info, inputs)
results.update({
"Warnning":
"This usage is out of date, please "
"use 'application/json' as "
"content-type to post to "
"/predict/%s. See "
"'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details."
% (module_name)
})
return gen_result("-1", results, "")
req_id = request.data.get("id")
img_base64 = request.form.getlist("image")
extra_info = {}
for item in list(request.form.keys()):
extra_info.update({item: request.form.getlist(item)})
for key in extra_info.keys():
if isinstance(extra_info[key], list):
extra_info[key] = utils.base64s_to_cvmats(
eval(extra_info[key][0])["b64s"]) if isinstance(
extra_info[key][0], str
) and "b64s" in extra_info[key][0] else extra_info[key]
file_name_list = []
if img_base64 != []:
for item in img_base64:
ext = item.split(";")[0].split("/")[-1]
if ext not in ["jpeg", "jpg", "png"]:
return gen_result("-1", "Unrecognized file type", "")
filename = req_id + "_" \
+ utils.md5(str(time.time()) + item[0:20]) \
+ "." \
+ ext
img_data = base64.b64decode(item.split(',')[-1])
file_name_list.append(filename)
with open(filename, "wb") as fp:
fp.write(img_data)
else:
file = request.files.getlist("image")
for item in file:
file_name = req_id + "_" + item.filename
item.save(file_name)
file_name_list.append(file_name)
module = module_info["module"]
predict_func_name = cv_module_info.cv_module_method.get(module_name, "")
if predict_func_name != "":
predict_func = eval(predict_func_name)
else:
module_type = module.type.split("/")[-1].replace("-", "_").lower()
predict_func = eval("predict_" + module_type)
if file_name_list == []:
file_name_list = None
if extra_info == {}:
extra_info = None
results = predict_func(module_info, file_name_list, req_id, extra_info)
return results
@app_instance.route("/predict/text/", methods=["POST"])
def predict_text(module_name):
if request.path.split("/")[-1] not in nlp_module_info.nlp_modules:
return {"error": "Module {} is not available.".format(module_name)}
module_info = nlp_module_info.get_module_info(module_name)
if module_info["code_version"] == "v2":
results = "This usage is out of date, please use 'application/json' as content-type to post to /predict/%s. See 'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details." % (
module_name)
return gen_result("-1", results, "")
req_id = request.data.get("id")
inputs = {}
for item in list(request.form.keys()):
inputs.update({item: request.form.getlist(item)})
files = {}
for file_key in list(request.files.keys()):
files[file_key] = []
for file in request.files.getlist(file_key):
file_name = req_id + "_" + file.filename
files[file_key].append(file_name)
file.save(file_name)
results = predict_nlp(
module_info=module_info,
input_text=inputs,
req_id=req_id,
extra=files)
return results
@app_instance.route("/predict/", methods=["POST"])
def predict_modulev2(module_name):
if module_name in v2_module_info.modules:
module_info = v2_module_info.get_module_info(module_name)
else:
msg = "Module {} is not available.".format(module_name)
return gen_result("-1", msg, "")
inputs = request.json
if inputs is None:
results = "This usage is out of date, please use 'application/json' as content-type to post to /predict/%s. See 'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details." % (
module_name)
return gen_result("-1", results, "")
results = predict_v2_advanced(module_info, inputs)
return results
return app_instance
def config_with_file(configs):
for key, value in configs.items():
if "CV" == value["category"]:
cv_module_info.add_module(key, {key: value})
elif "NLP" == value["category"]:
nlp_module_info.add_module(key, {key: value})
v2_module_info.add_module(key, {key: value})
print(key, "==", value["version"])
def run(configs=None, port=8866):
if configs is not None:
config_with_file(configs)
else:
print("Start failed cause of missing configuration.")
return
my_app = create_app(init_flag=True)
my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False)
print("PaddleHub-Serving has been stopped.")
if __name__ == "__main__":
configs = [{
'category': 'NLP',
u'queue_size': 20,
u'version': u'1.0.0',
u'module': 'lac',
u'batch_size': 20
},
{
'category': 'NLP',
u'queue_size': 20,
u'version': u'1.0.0',
u'module': 'senta_lstm',
u'batch_size': 20
},
{
'category': 'CV',
u'queue_size': 20,
u'version': u'1.0.0',
u'module': 'yolov3_coco2017',
u'batch_size': 20
},
{
'category': 'CV',
u'queue_size': 20,
u'version': u'1.0.0',
u'module': 'faster_rcnn_coco2017',
u'batch_size': 20
}]
run(is_use_gpu=False, configs=configs)