# coding: utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from flask import Flask, request, render_template from paddlehub.serving.model_service.base_model_service import cv_module_info from paddlehub.serving.model_service.base_model_service import nlp_module_info from paddlehub.serving.model_service.base_model_service import v2_module_info from paddlehub.common import utils import functools import traceback import time import os import base64 import logging import glob def gen_result(status, msg, data): return {"status": status, "msg": msg, "results": data} def predict_v2_advanced(module_info, input): serving_method_name = module_info["method_name"] serving_method = getattr(module_info["module"], serving_method_name) predict_args = module_info["predict_args"].copy() predict_args.update(input) for item in serving_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) try: output = serving_method(**predict_args) except Exception as err: traceback.print_exc() return gen_result("-1", "Please check data format!", "") return gen_result("0", "", output) def predict_nlp(module_info, input_text, req_id, extra=None): method_name = module_info["method_name"] predict_method = getattr(module_info["module"], method_name) predict_args = module_info["predict_args"].copy() predict_args.update({"data": input_text}) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) if module_info["name"] == "lac" and extra.get("user_dict", []) != []: predict_args.update({"user_dict": extra.get("user_dict", [])[0]}) try: res = predict_method(**predict_args) except Exception as err: traceback.print_exc() return gen_result("-1", "Please check data format!", "") finally: user_dict = extra.get("user_dict", []) for item in user_dict: if os.path.exists(item): os.remove(item) return gen_result("0", "", res) def predict_classification(module_info, input_img, id, extra={}): method_name = module_info["method_name"] module = module_info["module"] predict_method = getattr(module, method_name) predict_args = module_info["predict_args"].copy() predict_args.update({"data": {"image": input_img}}) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) try: results = predict_method(**predict_args) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return gen_result("-1", "Please check data format!", "") finally: for item in input_img: if os.path.exists(item): os.remove(item) return gen_result("0", "", str(results)) def predict_gan(module_info, input_img, id, extra={}): method_name = module_info["method_name"] module = module_info["module"] predict_method = getattr(module, method_name) predict_args = module_info["predict_args"].copy() predict_args.update({"data": {"image": input_img}}) predict_args["data"].update(extra) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) results = predict_method(**predict_args) try: pass except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return gen_result("-1", "Please check data format!", "") finally: base64_list = [] results_pack = [] for index in range(len(input_img)): item = input_img[index] output_file = results[index].split(" ")[-1] with open(output_file, "rb") as fp: b_head = "data:image/" + item.split(".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index] = results[index].replace(id + "_", "") results[index] = {"path": results[index]} results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(output_file) return gen_result("0", "", str(results_pack)) def predict_mask(module_info, input_img, id, extra=None, r_img=False): output_folder = "detection_result" method_name = module_info["method_name"] module = module_info["module"] predict_method = getattr(module, method_name) data_len = len(input_img) if input_img is not None else 0 data = {} if input_img is not None: input_img = {"image": input_img} data.update(input_img) if extra is not None: data.update(extra) r_img = True if "visual_result" in extra.keys() else False predict_args = module_info["predict_args"].copy() predict_args.update({"data": data}) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) try: results = predict_method(**predict_args) results = utils.handle_mask_results(results, data_len) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return gen_result("-1", "Please check data format!", "") finally: base64_list = [] results_pack = [] if input_img is not None: if r_img is False: for index in range(len(results)): results[index]["path"] = "" results_pack = results str_id = id + "*" files_deleted = glob.glob(str_id) for path in files_deleted: if os.path.exists(path): os.remove(path) else: input_img = input_img.get("image", []) for index in range(len(input_img)): item = input_img[index] file_path = os.path.join(output_folder, item) if not os.path.exists(file_path): results_pack.append(results[index]) os.remove(item) else: with open(file_path, "rb") as fp: b_head = "data:image/" + item.split( ".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace( "'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index]["path"] = results[index]["path"].replace( id + "_", "") if results[index]["path"] != "" \ else "" results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(os.path.join(output_folder, item)) else: results_pack = results return gen_result("0", "", str(results_pack)) def predict_object_detection(module_info, input_img, id, extra={}): output_folder = "detection_result" method_name = module_info["method_name"] module = module_info["module"] predict_method = getattr(module, method_name) predict_args = module_info["predict_args"].copy() predict_args.update({"data": {"image": input_img}}) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) try: results = predict_method(**predict_args) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return gen_result("-1", "Please check data format!", "") finally: base64_list = [] results_pack = [] for index in range(len(input_img)): item = input_img[index] with open(os.path.join(output_folder, item), "rb") as fp: b_head = "data:image/" + item.split(".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index]["path"] = results[index]["path"].replace( id + "_", "") results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(os.path.join(output_folder, item)) return gen_result("0", "", str(results_pack)) def predict_semantic_segmentation(module_info, input_img, id, extra={}): method_name = module_info["method_name"] module = module_info["module"] predict_method = getattr(module, method_name) predict_args = module_info["predict_args"].copy() predict_args.update({"data": {"image": input_img}}) if isinstance(predict_method, functools.partial): predict_method = predict_method.func predict_args.update({"sign_name": method_name}) for item in predict_method.__code__.co_varnames: if item in module_info.keys(): predict_args.update({item: module_info[item]}) try: results = predict_method(**predict_args) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return gen_result("-1", "Please check data format!", "") finally: base64_list = [] results_pack = [] for index in range(len(input_img)): item = input_img[index] with open(results[index]["processed"], "rb") as fp: b_head = "data:image/png;base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) output_file_path = results[index]["processed"] results[index]["origin"] = results[index]["origin"].replace( id + "_", "") results[index]["processed"] = results[index][ "processed"].replace(id + "_", "") results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) if output_file_path != "": os.remove(output_file_path) return gen_result("0", "", str(results_pack)) def create_app(init_flag=False, configs=None): if init_flag is False: if configs is None: raise RuntimeError("Lack of necessary configs.") config_with_file(configs) app_instance = Flask(__name__) app_instance.config["JSON_AS_ASCII"] = False logging.basicConfig() gunicorn_logger = logging.getLogger('gunicorn.error') app_instance.logger.handlers = gunicorn_logger.handlers app_instance.logger.setLevel(gunicorn_logger.level) @app_instance.route("/", methods=["GET", "POST"]) def index(): return '暂不提供可视化界面,请直接使用脚本进行请求。
No visual ' \ 'interface is provided for the time being, please use the' \ ' python script to make a request directly.' @app_instance.before_request def before_request(): request.data = {"id": utils.md5(request.remote_addr + str(time.time()))} @app_instance.route("/get/modules", methods=["GET", "POST"]) def get_modules_info(): module_info = {} if len(nlp_module_info.nlp_modules) > 0: module_info.update({"nlp_module": [{"Choose...": "Choose..."}]}) for item in nlp_module_info.nlp_modules: module_info["nlp_module"].append({item: item}) if len(cv_module_info.cv_modules) > 0: module_info.update({"cv_module": [{"Choose...": "Choose..."}]}) for item in cv_module_info.cv_modules: module_info["cv_module"].append({item: item}) return {"module_info": module_info} @app_instance.route("/predict/image/", methods=["POST"]) def predict_image(module_name): if request.path.split("/")[-1] not in cv_module_info.modules_info: return {"error": "Module {} is not available.".format(module_name)} module_info = cv_module_info.get_module_info(module_name) if module_info["code_version"] == "v2": results = {} # results = predict_v2(module_info, inputs) results.update({ "Warnning": "This usage is out of date, please " "use 'application/json' as " "content-type to post to " "/predict/%s. See " "'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details." % (module_name) }) return gen_result("-1", results, "") req_id = request.data.get("id") img_base64 = request.form.getlist("image") extra_info = {} for item in list(request.form.keys()): extra_info.update({item: request.form.getlist(item)}) for key in extra_info.keys(): if isinstance(extra_info[key], list): extra_info[key] = utils.base64s_to_cvmats( eval(extra_info[key][0])["b64s"]) if isinstance( extra_info[key][0], str ) and "b64s" in extra_info[key][0] else extra_info[key] file_name_list = [] if img_base64 != []: for item in img_base64: ext = item.split(";")[0].split("/")[-1] if ext not in ["jpeg", "jpg", "png"]: return gen_result("-1", "Unrecognized file type", "") filename = req_id + "_" \ + utils.md5(str(time.time()) + item[0:20]) \ + "." \ + ext img_data = base64.b64decode(item.split(',')[-1]) file_name_list.append(filename) with open(filename, "wb") as fp: fp.write(img_data) else: file = request.files.getlist("image") for item in file: file_name = req_id + "_" + item.filename item.save(file_name) file_name_list.append(file_name) module = module_info["module"] predict_func_name = cv_module_info.cv_module_method.get(module_name, "") if predict_func_name != "": predict_func = eval(predict_func_name) else: module_type = module.type.split("/")[-1].replace("-", "_").lower() predict_func = eval("predict_" + module_type) if file_name_list == []: file_name_list = None if extra_info == {}: extra_info = None results = predict_func(module_info, file_name_list, req_id, extra_info) return results @app_instance.route("/predict/text/", methods=["POST"]) def predict_text(module_name): if request.path.split("/")[-1] not in nlp_module_info.nlp_modules: return {"error": "Module {} is not available.".format(module_name)} module_info = nlp_module_info.get_module_info(module_name) if module_info["code_version"] == "v2": results = "This usage is out of date, please use 'application/json' as content-type to post to /predict/%s. See 'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details." % ( module_name) return gen_result("-1", results, "") req_id = request.data.get("id") inputs = {} for item in list(request.form.keys()): inputs.update({item: request.form.getlist(item)}) files = {} for file_key in list(request.files.keys()): files[file_key] = [] for file in request.files.getlist(file_key): file_name = req_id + "_" + file.filename files[file_key].append(file_name) file.save(file_name) results = predict_nlp( module_info=module_info, input_text=inputs, req_id=req_id, extra=files) return results @app_instance.route("/predict/", methods=["POST"]) def predict_modulev2(module_name): if module_name in v2_module_info.modules: module_info = v2_module_info.get_module_info(module_name) else: msg = "Module {} is not available.".format(module_name) return gen_result("-1", msg, "") inputs = request.json if inputs is None: results = "This usage is out of date, please use 'application/json' as content-type to post to /predict/%s. See 'https://github.com/PaddlePaddle/PaddleHub/blob/release/v1.6/docs/tutorial/serving.md' for more details." % ( module_name) return gen_result("-1", results, "") results = predict_v2_advanced(module_info, inputs) return results return app_instance def config_with_file(configs): for key, value in configs.items(): if "CV" == value["category"]: cv_module_info.add_module(key, {key: value}) elif "NLP" == value["category"]: nlp_module_info.add_module(key, {key: value}) v2_module_info.add_module(key, {key: value}) print(key, "==", value["version"]) def run(configs=None, port=8866): if configs is not None: config_with_file(configs) else: print("Start failed cause of missing configuration.") return my_app = create_app(init_flag=True) my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False) print("PaddleHub-Serving has been stopped.") if __name__ == "__main__": configs = [{ 'category': 'NLP', u'queue_size': 20, u'version': u'1.0.0', u'module': 'lac', u'batch_size': 20 }, { 'category': 'NLP', u'queue_size': 20, u'version': u'1.0.0', u'module': 'senta_lstm', u'batch_size': 20 }, { 'category': 'CV', u'queue_size': 20, u'version': u'1.0.0', u'module': 'yolov3_coco2017', u'batch_size': 20 }, { 'category': 'CV', u'queue_size': 20, u'version': u'1.0.0', u'module': 'faster_rcnn_coco2017', u'batch_size': 20 }] run(is_use_gpu=False, configs=configs)