#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import collections import json import io import math import numpy as np import os import six import sys import time import paddle import paddle.fluid as fluid import paddlehub as hub from paddlehub.finetune.task.reading_comprehension_task import write_predictions hub.common.logger.logger.setLevel("INFO") # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint.") parser.add_argument("--max_seq_len", type=int, default=384, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub BERT pretrained model module = hub.Module(name="bert_uncased_L-12_H-768_A-12") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and use ReadingComprehensionReader to read dataset # If you wanna load SQuAD 2.0 dataset, just set version_2_with_negative as True dataset = hub.dataset.SQUAD(version_2_with_negative=False) # dataset = hub.dataset.SQUAD(version_2_with_negative=True) reader = hub.reader.ReadingComprehensionReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len, doc_stride=128, max_query_length=64) # Use "sequence_output" for token-level output. seq_output = outputs["sequence_output"] # Setup feed list for data feeder feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( use_data_parallel=False, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.AdamWeightDecayStrategy()) # Define a reading comprehension finetune task by PaddleHub's API reading_comprehension_task = hub.ReadingComprehensionTask( data_reader=reader, feature=seq_output, feed_list=feed_list, config=config) # Data to be predicted data = dataset.dev_examples[:10] reading_comprehension_task.predict(data=data)