# stgan_bald |Module Name|stgan_bald| | :--- | :---: | |Category|image generation| |Network|STGAN| |Dataset|CelebA| |Fine-tuning supported or not|No| |Module Size|287MB| |Latest update date|2021-02-26| |Data indicators|-| ## I.Basic Information - ### Application Effect Display - Please refer to this [link](https://aistudio.baidu.com/aistudio/projectdetail/1145381) - ### Module Introduction - This module is based on STGAN model, trained on CelebA dataset, and can be used to predict bald appearance after 1, 3 and 5 years. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 1.8.2 - paddlehub >= 1.8.0 | [How to install PaddleHub](../../../../docs/docs_en/get_start/installation.rst) - ### 2、Installation - ```shell $ hub install stgan_bald ``` - In case of any problems during installation, please refer to: [Windows_Quickstart](../../../../docs/docs_en/get_start/windows_quickstart.md) | [Linux_Quickstart](../../../../docs/docs_en/get_start/linux_quickstart.md) | [Mac_Quickstart](../../../../docs/docs_en/get_start/mac_quickstart.md) ## III.Module API Prediction - ### 1、Prediction Code Example - ```python import paddlehub as hub import cv2 stgan_bald = hub.Module(name="stgan_bald") result = stgan_bald.bald(images=[cv2.imread('/PATH/TO/IMAGE')]) # or # result = stgan_bald.bald(paths=['/PATH/TO/IMAGE']) ``` - ### 2、API - ```python def bald(images=None, paths=None, use_gpu=False, visualization=False, output_dir="bald_output") ``` - Bald appearance generation API. - **Parameters** - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - paths (list[str]): image path; - use_gpu (bool): use GPU or not; **set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU** - visualization (bool): Whether to save the results as picture files; - output_dir (str): save path of images; **NOTE:** choose one parameter to provide data from paths and images - **Return** - res (list\[numpy.ndarray\]): result list,ndarray.shape 为 \[H, W, C\] ## IV.Server Deployment - PaddleHub Serving can deploy an online service of bald appearance generation. - ### Step 1: Start PaddleHub Serving - Run the startup command: - ```shell $ hub serving start -m stgan_bald ``` - The servitization API is now deployed and the default port number is 8866. - **NOTE:** If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set. - ### Step 2: Send a predictive request - With a configured server, use the following lines of code to send the prediction request and obtain the result - ```python import requests import json import cv2 import base64 import numpy as np def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data # Send an HTTP request data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]} headers = {"Content-type": "application/json"} url = "http://127.0.0.1:8866/predict/stgan_bald" r = requests.post(url=url, headers=headers, data=json.dumps(data)) # save results one_year =cv2.cvtColor(base64_to_cv2(r.json()["results"]['data_0']), cv2.COLOR_RGB2BGR) three_year =cv2.cvtColor(base64_to_cv2(r.json()["results"]['data_1']), cv2.COLOR_RGB2BGR) five_year =cv2.cvtColor(base64_to_cv2(r.json()["results"]['data_2']), cv2.COLOR_RGB2BGR) cv2.imwrite("stgan_bald_server.png", one_year) ``` ## V.Release Note * 1.0.0 First release - ```shell $ hub install stgan_bald==1.0.0 ```