# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddlehub as hub from paddlenlp.data import JiebaTokenizer from model import BoWModel import ast import argparse parser = argparse.ArgumentParser(__doc__) parser.add_argument("--hub_embedding_name", type=str, default='w2v_baidu_encyclopedia_target_word-word_dim300', help="") parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number in batch for training.") parser.add_argument("--checkpoint", type=str, default='./checkpoint/best_model/model.pdparams', help="Model checkpoint") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") args = parser.parse_args() if __name__ == '__main__': # Data to be prdicted data = [ ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"], ["还稍微重了点,可能是硬盘大的原故,还要再轻半斤就好了。其他要进一步验证。贴的几种膜气泡较多,用不了多久就要更换了,屏幕膜稍好点,但比没有要强多了。建议配赠几张膜让用用户自己贴。"], ["前台接待太差,酒店有A B楼之分,本人check-in后,前台未告诉B楼在何处,并且B楼无明显指示;房间太小,根本不像4星级设施,下次不会再选择入住此店啦"], ["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"], ] label_map = {0: 'negative', 1: 'positive'} embedder = hub.Module(name=args.hub_embedding_name) tokenizer = embedder.get_tokenizer() model = BoWModel( embedder=embedder, tokenizer=tokenizer, load_checkpoint=args.checkpoint, label_map=label_map) results = model.predict(data, max_seq_len=args.max_seq_len, batch_size=args.batch_size, use_gpu=args.use_gpu, return_result=False) for idx, text in enumerate(data): print('Data: {} \t Lable: {}'.format(text[0], results[idx]))