#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import paddlehub as hub hub.common.logger.logger.setLevel("INFO") # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False") parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint.") parser.add_argument("--max_seq_len", type=int, default=384, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=8, help="Total examples' number in batch for training.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub BERT pretrained model module = hub.Module(name="bert_uncased_L-12_H-768_A-12") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and use ReadingComprehensionReader to read dataset # If you wanna load SQuAD 2.0 dataset, just set version_2_with_negative as True dataset = hub.dataset.SQUAD(version_2_with_negative=False) # dataset = hub.dataset.SQUAD(version_2_with_negative=True) reader = hub.reader.ReadingComprehensionReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len, doc_stride=128, max_query_length=64) # Use "sequence_output" for token-level output. seq_output = outputs["sequence_output"] # Setup feed list for data feeder feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( use_data_parallel=False, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.AdamWeightDecayStrategy()) # Define a reading comprehension finetune task by PaddleHub's API reading_comprehension_task = hub.ReadingComprehensionTask( data_reader=reader, feature=seq_output, feed_list=feed_list, config=config) # Data to be predicted data = dataset.dev_examples[:10] print(reading_comprehension_task.predict(data=data, return_result=True))