diff --git a/modules/image/image_processing/EnlightenGAN/README.md b/modules/image/image_processing/EnlightenGAN/README.md
deleted file mode 100644
index 58024e2faf94ddc781265e97f5f9045a967f7cf7..0000000000000000000000000000000000000000
--- a/modules/image/image_processing/EnlightenGAN/README.md
+++ /dev/null
@@ -1,84 +0,0 @@
-# EnlightenGAN
-
-|模型名称|EnlightenGAN|
-| :--- | :---: |
-|类别|图像 - 暗光增强|
-|网络|EnlightenGAN|
-|数据集||
-|是否支持Fine-tuning|否|
-|模型大小|83MB|
-|最新更新日期|2021-11-04|
-|数据指标|-|
-
-
-## 一、模型基本信息
-
-- ### 模型介绍
-
- - EnlightenGAN使用非成对的数据进行训练,通过设计自特征保留损失函数和自约束注意力机制,训练的网络可以应用到多种场景下的暗光增强中。
-
- - 更多详情参考:[EnlightenGAN: Deep Light Enhancement without Paired Supervision](https://arxiv.org/abs/1906.06972)
-
-
-
-## 二、安装
-
-- ### 1、环境依赖
- - onnxruntime
- - x2paddle
- - pillow
-
-- ### 2、安装
-
- - ```shell
- $ hub install EnlightenGAN
- ```
- - 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
- | [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
-
-## 三、模型API预测
-
-- ### 1、命令行预测
-
- - ```shell
- # Read from a file
- $ hub run EnlightenGAN --input_path "/PATH/TO/IMAGE"
- ```
- - 通过命令行方式实现暗光增强模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
-
-- ### 2、预测代码示例
-
- - ```python
- import paddlehub as hub
-
- enlightener = hub.Module(name="EnlightenGAN")
- input_path = "/PATH/TO/IMAGE"
- # Read from a raw file
- enlightener.enlightening(input_path, output_path='./enlightening_result.png', use_gpu=True)
- ```
-
-- ### 3、API
-
- - ```python
- def enlightening(input_path, output_path='./enlightening_result.png', use_gpu=False)
- ```
- - 暗光增强API。
-
- - **参数**
-
- - input\_path (str): 输入图像文件的路径;
- - output\_path (str): 结果保存的路径, 需要指定输出文件名;
- - use\_gpu (bool): 是否使用 GPU;
-
-
-
-
-## 四、更新历史
-
-* 1.0.0
-
- 初始发布
-
- - ```shell
- $ hub install EnlightenGAN==1.0.0
- ```
diff --git a/modules/image/image_processing/EnlightenGAN/enlighten_inference/pd_model/x2paddle_code.py b/modules/image/image_processing/EnlightenGAN/enlighten_inference/pd_model/x2paddle_code.py
deleted file mode 100755
index 92da60a17a1dbe241f8ffe022d09b28cefb86000..0000000000000000000000000000000000000000
--- a/modules/image/image_processing/EnlightenGAN/enlighten_inference/pd_model/x2paddle_code.py
+++ /dev/null
@@ -1,219 +0,0 @@
-import paddle
-import math
-from x2paddle.op_mapper.onnx2paddle import onnx_custom_layer as x2paddle_nn
-
-
-class ONNXModel(paddle.nn.Layer):
- def __init__(self):
- super(ONNXModel, self).__init__()
- self.conv0 = paddle.nn.Conv2D(in_channels=3, out_channels=3, kernel_size=[1, 1], groups=3)
- self.pool0 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.pool1 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.conv1 = paddle.nn.Conv2D(in_channels=4, out_channels=32, kernel_size=[3, 3], padding=1)
- self.pool2 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.leakyrelu0 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.pool3 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.batchnorm0 = paddle.nn.BatchNorm(
- num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv2 = paddle.nn.Conv2D(in_channels=32, out_channels=32, kernel_size=[3, 3], padding=1)
- self.leakyrelu1 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm1 = paddle.nn.BatchNorm(
- num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.pool4 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.conv3 = paddle.nn.Conv2D(in_channels=32, out_channels=64, kernel_size=[3, 3], padding=1)
- self.leakyrelu2 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm2 = paddle.nn.BatchNorm(
- num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv4 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=[3, 3], padding=1)
- self.leakyrelu3 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm3 = paddle.nn.BatchNorm(
- num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.pool5 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.conv5 = paddle.nn.Conv2D(in_channels=64, out_channels=128, kernel_size=[3, 3], padding=1)
- self.leakyrelu4 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm4 = paddle.nn.BatchNorm(
- num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv6 = paddle.nn.Conv2D(in_channels=128, out_channels=128, kernel_size=[3, 3], padding=1)
- self.leakyrelu5 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm5 = paddle.nn.BatchNorm(
- num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.pool6 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.conv7 = paddle.nn.Conv2D(in_channels=128, out_channels=256, kernel_size=[3, 3], padding=1)
- self.leakyrelu6 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm6 = paddle.nn.BatchNorm(
- num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv8 = paddle.nn.Conv2D(in_channels=256, out_channels=256, kernel_size=[3, 3], padding=1)
- self.leakyrelu7 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm7 = paddle.nn.BatchNorm(
- num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.pool7 = paddle.nn.MaxPool2D(kernel_size=[2, 2], stride=2)
- self.conv9 = paddle.nn.Conv2D(in_channels=256, out_channels=512, kernel_size=[3, 3], padding=1)
- self.leakyrelu8 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm8 = paddle.nn.BatchNorm(
- num_channels=512, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv10 = paddle.nn.Conv2D(in_channels=512, out_channels=512, kernel_size=[3, 3], padding=1)
- self.leakyrelu9 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm9 = paddle.nn.BatchNorm(
- num_channels=512, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv11 = paddle.nn.Conv2D(in_channels=512, out_channels=256, kernel_size=[3, 3], padding=1)
- self.conv12 = paddle.nn.Conv2D(in_channels=512, out_channels=256, kernel_size=[3, 3], padding=1)
- self.leakyrelu10 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm10 = paddle.nn.BatchNorm(
- num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv13 = paddle.nn.Conv2D(in_channels=256, out_channels=256, kernel_size=[3, 3], padding=1)
- self.leakyrelu11 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm11 = paddle.nn.BatchNorm(
- num_channels=256, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv14 = paddle.nn.Conv2D(in_channels=256, out_channels=128, kernel_size=[3, 3], padding=1)
- self.conv15 = paddle.nn.Conv2D(in_channels=256, out_channels=128, kernel_size=[3, 3], padding=1)
- self.leakyrelu12 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm12 = paddle.nn.BatchNorm(
- num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv16 = paddle.nn.Conv2D(in_channels=128, out_channels=128, kernel_size=[3, 3], padding=1)
- self.leakyrelu13 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm13 = paddle.nn.BatchNorm(
- num_channels=128, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv17 = paddle.nn.Conv2D(in_channels=128, out_channels=64, kernel_size=[3, 3], padding=1)
- self.conv18 = paddle.nn.Conv2D(in_channels=128, out_channels=64, kernel_size=[3, 3], padding=1)
- self.leakyrelu14 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm14 = paddle.nn.BatchNorm(
- num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv19 = paddle.nn.Conv2D(in_channels=64, out_channels=64, kernel_size=[3, 3], padding=1)
- self.leakyrelu15 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm15 = paddle.nn.BatchNorm(
- num_channels=64, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv20 = paddle.nn.Conv2D(in_channels=64, out_channels=32, kernel_size=[3, 3], padding=1)
- self.conv21 = paddle.nn.Conv2D(in_channels=64, out_channels=32, kernel_size=[3, 3], padding=1)
- self.leakyrelu16 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.batchnorm16 = paddle.nn.BatchNorm(
- num_channels=32, momentum=0.8999999761581421, epsilon=9.999999747378752e-06, is_test=True)
- self.conv22 = paddle.nn.Conv2D(in_channels=32, out_channels=32, kernel_size=[3, 3], padding=1)
- self.leakyrelu17 = paddle.nn.LeakyReLU(negative_slope=0.20000000298023224)
- self.conv23 = paddle.nn.Conv2D(in_channels=32, out_channels=3, kernel_size=[1, 1])
-
- def forward(self, x2paddle_input):
- x2paddle_137 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
- x2paddle_145 = paddle.full(dtype='float32', shape=[1], fill_value=0.29899999499320984)
- x2paddle_147 = paddle.full(dtype='float32', shape=[1], fill_value=0.5870000123977661)
- x2paddle_150 = paddle.full(dtype='float32', shape=[1], fill_value=0.11400000005960464)
- x2paddle_153 = paddle.full(dtype='float32', shape=[1], fill_value=2.0)
- x2paddle_155 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
- x2paddle_256 = paddle.full(dtype='float32', shape=[1], fill_value=1.0)
- x2paddle_134 = self.conv0(x2paddle_input)
- x2paddle_135, = paddle.split(x=x2paddle_134, num_or_sections=[1])
- x2paddle_257 = paddle.multiply(x=x2paddle_134, y=x2paddle_256)
- x2paddle_136 = paddle.squeeze(x=x2paddle_135, axis=[0])
- x2paddle_138 = paddle.add(x=x2paddle_136, y=x2paddle_137)
- x2paddle_139_p0, x2paddle_139_p1, x2paddle_139_p2 = paddle.split(x=x2paddle_138, num_or_sections=[1, 1, 1])
- x2paddle_142 = paddle.squeeze(x=x2paddle_139_p0, axis=[0])
- x2paddle_143 = paddle.squeeze(x=x2paddle_139_p1, axis=[0])
- x2paddle_144 = paddle.squeeze(x=x2paddle_139_p2, axis=[0])
- x2paddle_146 = paddle.multiply(x=x2paddle_142, y=x2paddle_145)
- x2paddle_148 = paddle.multiply(x=x2paddle_143, y=x2paddle_147)
- x2paddle_151 = paddle.multiply(x=x2paddle_144, y=x2paddle_150)
- x2paddle_149 = paddle.add(x=x2paddle_146, y=x2paddle_148)
- x2paddle_152 = paddle.add(x=x2paddle_149, y=x2paddle_151)
- x2paddle_154 = paddle.divide(x=x2paddle_152, y=x2paddle_153)
- x2paddle_156 = paddle.subtract(x=x2paddle_155, y=x2paddle_154)
- x2paddle_157 = paddle.unsqueeze(x=x2paddle_156, axis=[0])
- x2paddle_158 = paddle.unsqueeze(x=x2paddle_157, axis=[0])
- x2paddle_159 = self.pool0(x2paddle_158)
- x2paddle_163 = paddle.concat(x=[x2paddle_134, x2paddle_158], axis=1)
- x2paddle_160 = self.pool1(x2paddle_159)
- x2paddle_164 = self.conv1(x2paddle_163)
- x2paddle_161 = self.pool2(x2paddle_160)
- x2paddle_165 = self.leakyrelu0(x2paddle_164)
- x2paddle_162 = self.pool3(x2paddle_161)
- x2paddle_166 = self.batchnorm0(x2paddle_165)
- x2paddle_167 = self.conv2(x2paddle_166)
- x2paddle_168 = self.leakyrelu1(x2paddle_167)
- x2paddle_169 = self.batchnorm1(x2paddle_168)
- x2paddle_170 = self.pool4(x2paddle_169)
- x2paddle_246 = paddle.multiply(x=x2paddle_169, y=x2paddle_158)
- x2paddle_171 = self.conv3(x2paddle_170)
- x2paddle_172 = self.leakyrelu2(x2paddle_171)
- x2paddle_173 = self.batchnorm2(x2paddle_172)
- x2paddle_174 = self.conv4(x2paddle_173)
- x2paddle_175 = self.leakyrelu3(x2paddle_174)
- x2paddle_176 = self.batchnorm3(x2paddle_175)
- x2paddle_177 = self.pool5(x2paddle_176)
- x2paddle_232 = paddle.multiply(x=x2paddle_176, y=x2paddle_159)
- x2paddle_178 = self.conv5(x2paddle_177)
- x2paddle_179 = self.leakyrelu4(x2paddle_178)
- x2paddle_180 = self.batchnorm4(x2paddle_179)
- x2paddle_181 = self.conv6(x2paddle_180)
- x2paddle_182 = self.leakyrelu5(x2paddle_181)
- x2paddle_183 = self.batchnorm5(x2paddle_182)
- x2paddle_184 = self.pool6(x2paddle_183)
- x2paddle_218 = paddle.multiply(x=x2paddle_183, y=x2paddle_160)
- x2paddle_185 = self.conv7(x2paddle_184)
- x2paddle_186 = self.leakyrelu6(x2paddle_185)
- x2paddle_187 = self.batchnorm6(x2paddle_186)
- x2paddle_188 = self.conv8(x2paddle_187)
- x2paddle_189 = self.leakyrelu7(x2paddle_188)
- x2paddle_190 = self.batchnorm7(x2paddle_189)
- x2paddle_191 = self.pool7(x2paddle_190)
- x2paddle_204 = paddle.multiply(x=x2paddle_190, y=x2paddle_161)
- x2paddle_192 = self.conv9(x2paddle_191)
- x2paddle_193 = self.leakyrelu8(x2paddle_192)
- x2paddle_194 = self.batchnorm8(x2paddle_193)
- x2paddle_195 = paddle.multiply(x=x2paddle_194, y=x2paddle_162)
- x2paddle_196 = self.conv10(x2paddle_195)
- x2paddle_197 = self.leakyrelu9(x2paddle_196)
- x2paddle_198 = self.batchnorm9(x2paddle_197)
- x2paddle_203 = paddle.nn.functional.interpolate(x=x2paddle_198, scale_factor=[2.0, 2.0], mode='bilinear')
- x2paddle_205 = self.conv11(x2paddle_203)
- x2paddle_206 = paddle.concat(x=[x2paddle_205, x2paddle_204], axis=1)
- x2paddle_207 = self.conv12(x2paddle_206)
- x2paddle_208 = self.leakyrelu10(x2paddle_207)
- x2paddle_209 = self.batchnorm10(x2paddle_208)
- x2paddle_210 = self.conv13(x2paddle_209)
- x2paddle_211 = self.leakyrelu11(x2paddle_210)
- x2paddle_212 = self.batchnorm11(x2paddle_211)
- x2paddle_217 = paddle.nn.functional.interpolate(x=x2paddle_212, scale_factor=[2.0, 2.0], mode='bilinear')
- x2paddle_219 = self.conv14(x2paddle_217)
- x2paddle_220 = paddle.concat(x=[x2paddle_219, x2paddle_218], axis=1)
- x2paddle_221 = self.conv15(x2paddle_220)
- x2paddle_222 = self.leakyrelu12(x2paddle_221)
- x2paddle_223 = self.batchnorm12(x2paddle_222)
- x2paddle_224 = self.conv16(x2paddle_223)
- x2paddle_225 = self.leakyrelu13(x2paddle_224)
- x2paddle_226 = self.batchnorm13(x2paddle_225)
- x2paddle_231 = paddle.nn.functional.interpolate(x=x2paddle_226, scale_factor=[2.0, 2.0], mode='bilinear')
- x2paddle_233 = self.conv17(x2paddle_231)
- x2paddle_234 = paddle.concat(x=[x2paddle_233, x2paddle_232], axis=1)
- x2paddle_235 = self.conv18(x2paddle_234)
- x2paddle_236 = self.leakyrelu14(x2paddle_235)
- x2paddle_237 = self.batchnorm14(x2paddle_236)
- x2paddle_238 = self.conv19(x2paddle_237)
- x2paddle_239 = self.leakyrelu15(x2paddle_238)
- x2paddle_240 = self.batchnorm15(x2paddle_239)
- x2paddle_245 = paddle.nn.functional.interpolate(x=x2paddle_240, scale_factor=[2.0, 2.0], mode='bilinear')
- x2paddle_247 = self.conv20(x2paddle_245)
- x2paddle_248 = paddle.concat(x=[x2paddle_247, x2paddle_246], axis=1)
- x2paddle_249 = self.conv21(x2paddle_248)
- x2paddle_250 = self.leakyrelu16(x2paddle_249)
- x2paddle_251 = self.batchnorm16(x2paddle_250)
- x2paddle_252 = self.conv22(x2paddle_251)
- x2paddle_253 = self.leakyrelu17(x2paddle_252)
- x2paddle_254 = self.conv23(x2paddle_253)
- x2paddle_255 = paddle.multiply(x=x2paddle_254, y=x2paddle_158)
- x2paddle_output = paddle.add(x=x2paddle_255, y=x2paddle_257)
- return x2paddle_output, x2paddle_255
-
-
-def main(x2paddle_input):
- # There are 1 inputs.
- # x2paddle_input: shape-[-1, 3, 512, 512], type-float32.
- paddle.disable_static()
- params = paddle.load('/work/ToTransferInHub/EnlightenGAN-inference/enlighten_inference/pd_model/model.pdparams')
- model = ONNXModel()
- model.set_dict(params, use_structured_name=True)
- model.eval()
- out = model(x2paddle_input)
- return out
-
-
-if __name__ == '__main__':
- inputtensor = paddle.randn([1, 3, 512, 512])
- main(inputtensor)
diff --git a/modules/image/image_processing/EnlightenGAN/module.py b/modules/image/image_processing/EnlightenGAN/module.py
deleted file mode 100644
index fc99c7ca114c7f2ccd7214b134094f011bf1cc67..0000000000000000000000000000000000000000
--- a/modules/image/image_processing/EnlightenGAN/module.py
+++ /dev/null
@@ -1,96 +0,0 @@
-# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import os
-import argparse
-
-import paddle
-import paddlehub as hub
-from paddlehub.module.module import moduleinfo, runnable
-from PIL import Image
-import numpy as np
-from .enlighten_inference import EnlightenOnnxModel
-from .enlighten_inference.pd_model.x2paddle_code import ONNXModel
-
-
-@moduleinfo(
- name="EnlightenGAN", type="CV/enlighten", author="paddlepaddle", author_email="", summary="", version="1.0.0")
-class EnlightenGAN:
- def __init__(self):
- self.pretrained_model = os.path.join(self.directory, "enlighten_inference/pd_model")
-
- def enlightening(self, input_path, output_path='./enlightening_result.png', use_gpu=False):
- '''
- enlighten a image in the low-light scene.
-
- input_path: the image path
- output_path: the path to save the results
- use_gpu: if True, use gpu to perform the computation, otherwise cpu.
- '''
- paddle.disable_static()
- img = np.array(Image.open(input_path))
- img = np.expand_dims(np.transpose(img, (2, 0, 1)).astype(np.float32) / 255., 0)
- inputtensor = paddle.to_tensor(img)
- params = paddle.load(os.path.join(self.pretrained_model, 'model.pdparams'))
- model = ONNXModel()
- model.set_dict(params, use_structured_name=True)
- model.eval()
- out, out1 = model(inputtensor)
- out = out.numpy()[0]
- out = (np.transpose(out, (1, 2, 0)) + 1) / 2.0 * 255.0
- out = np.clip(out, 0, 255)
- out = out.astype('uint8')
-
- print('enlighten Over.')
- try:
- Image.fromarray(out).save(os.path.join(output_path))
- print('Image saved in {}'.format(output_path))
- except:
- print('Save image failed. Please check the output_path, should\
- be image format ext, e.g. png. current output path {}'.format(output_path))
- return out
-
- @runnable
- def run_cmd(self, argvs: list):
- """
- Run as a command.
- """
- self.parser = argparse.ArgumentParser(
- description="Run the {} module.".format(self.name),
- prog='hub run {}'.format(self.name),
- usage='%(prog)s',
- add_help=True)
-
- self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
- self.arg_config_group = self.parser.add_argument_group(
- title="Config options", description="Run configuration for controlling module behavior, not required.")
- self.add_module_config_arg()
- self.add_module_input_arg()
- self.args = self.parser.parse_args(argvs)
- self.enlightening(input_path=self.args.input_path, output_path=self.args.output_path, use_gpu=self.args.use_gpu)
-
- def add_module_config_arg(self):
- """
- Add the command config options.
- """
- self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")
-
- self.arg_config_group.add_argument(
- '--output_path', type=str, default='enlightening_result.png', help='output path for saving result.')
-
- def add_module_input_arg(self):
- """
- Add the command input options.
- """
- self.arg_input_group.add_argument('--input_path', type=str, help="path to input image.")
diff --git a/modules/image/image_processing/enlightengan/README.md b/modules/image/image_processing/enlightengan/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..0b95dc3db48e533c649346e3444209ec0d276f15
--- /dev/null
+++ b/modules/image/image_processing/enlightengan/README.md
@@ -0,0 +1,136 @@
+# enlightengan
+
+|模型名称|enlightengan|
+| :--- | :---: |
+|类别|图像 - 暗光增强|
+|网络|EnlightenGAN|
+|数据集|-|
+|是否支持Fine-tuning|否|
+|模型大小|83MB|
+|最新更新日期|2021-11-04|
+|数据指标|-|
+
+
+## 一、模型基本信息
+
+- ### 应用效果展示
+ - 样例结果示例:
+
+
+
+ 输入图像
+
+
+
+ 输出图像
+
+