diff --git a/modules/image/object_detection/yolov3_darknet53_pedestrian/README.md b/modules/image/object_detection/yolov3_darknet53_pedestrian/README.md index 1cdc1376737f4604e673c401facf3ee541a2939d..c1ba42e790fcc8f6be8536448a80fe10b376a700 100644 --- a/modules/image/object_detection/yolov3_darknet53_pedestrian/README.md +++ b/modules/image/object_detection/yolov3_darknet53_pedestrian/README.md @@ -101,19 +101,13 @@ - save\_path (str, optional): 识别结果的保存路径 (仅当visualization=True时存在) - ```python - def save_inference_model(dirname, - model_filename=None, - params_filename=None, - combined=True) + def save_inference_model(dirname) ``` - 将模型保存到指定路径。 - **参数** - - dirname: 存在模型的目录名称;
- - model\_filename: 模型文件名称,默认为\_\_model\_\_;
- - params\_filename: 参数文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效);
- - combined: 是否将参数保存到统一的一个文件中。 + - dirname: 模型保存路径
## 四、服务部署 @@ -171,6 +165,10 @@ 移除 fluid api +* 1.1.0 + + 修复推理模型无法导出的问题 + - ```shell - $ hub install yolov3_darknet53_pedestrian==1.0.3 + $ hub install yolov3_darknet53_pedestrian==1.1.0 ``` diff --git a/modules/image/object_detection/yolov3_darknet53_pedestrian/README_en.md b/modules/image/object_detection/yolov3_darknet53_pedestrian/README_en.md index 09d82d3919cf9e53ee0ef625be26ee0a4468fd02..faaf48e3cd668ff9959c378b6b7f2fa5e7886293 100644 --- a/modules/image/object_detection/yolov3_darknet53_pedestrian/README_en.md +++ b/modules/image/object_detection/yolov3_darknet53_pedestrian/README_en.md @@ -100,19 +100,13 @@ - save\_path (str, optional): output path for saving results - ```python - def save_inference_model(dirname, - model_filename=None, - params_filename=None, - combined=True) + def save_inference_model(dirname) ``` - Save model to specific path - **Parameters** - - dirname: output dir for saving model - - model\_filename: filename for saving model - - params\_filename: filename for saving parameters - - combined: whether save parameters into one file + - dirname: model save path ## IV.Server Deployment @@ -170,6 +164,10 @@ Remove fluid api +* 1.1.0 + + Fix bug of save_inference_model + - ```shell - $ hub install yolov3_darknet53_pedestrian==1.0.3 + $ hub install yolov3_darknet53_pedestrian==1.1.0 ``` diff --git a/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py b/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py index 5b8a4c8424d6dc759d916c920cbe0ea70ccb6d88..7d52f1fef08894cdc5bbd68d14383b8459ebd23f 100644 --- a/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py +++ b/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py @@ -8,30 +8,29 @@ from functools import partial import numpy as np import paddle +import paddle.jit +import paddle.static from paddle.inference import Config from paddle.inference import create_predictor -from yolov3_darknet53_pedestrian.data_feed import reader -from yolov3_darknet53_pedestrian.processor import base64_to_cv2 -from yolov3_darknet53_pedestrian.processor import load_label_info -from yolov3_darknet53_pedestrian.processor import postprocess +from .data_feed import reader +from .processor import base64_to_cv2 +from .processor import load_label_info +from .processor import postprocess -import paddlehub as hub -from paddlehub.common.paddle_helper import add_vars_prefix from paddlehub.module.module import moduleinfo from paddlehub.module.module import runnable from paddlehub.module.module import serving @moduleinfo(name="yolov3_darknet53_pedestrian", - version="1.0.3", + version="1.1.0", type="CV/object_detection", summary="Baidu's YOLOv3 model for pedestrian detection, with backbone DarkNet53.", author="paddlepaddle", author_email="paddle-dev@baidu.com") -class YOLOv3DarkNet53Pedestrian(hub.Module): - - def _initialize(self): - self.default_pretrained_model_path = os.path.join(self.directory, "yolov3_darknet53_pedestrian_model") +class YOLOv3DarkNet53Pedestrian: + def __init__(self): + self.default_pretrained_model_path = os.path.join(self.directory, "yolov3_darknet53_pedestrian_model", "model") self.label_names = load_label_info(os.path.join(self.directory, "label_file.txt")) self._set_config() @@ -39,7 +38,9 @@ class YOLOv3DarkNet53Pedestrian(hub.Module): """ predictor config setting. """ - cpu_config = Config(self.default_pretrained_model_path) + model = self.default_pretrained_model_path+'.pdmodel' + params = self.default_pretrained_model_path+'.pdiparams' + cpu_config = Config(model, params) cpu_config.disable_glog_info() cpu_config.disable_gpu() cpu_config.switch_ir_optim(False) @@ -52,7 +53,7 @@ class YOLOv3DarkNet53Pedestrian(hub.Module): except: use_gpu = False if use_gpu: - gpu_config = Config(self.default_pretrained_model_path) + gpu_config = Config(model, params) gpu_config.disable_glog_info() gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0) self.gpu_predictor = create_predictor(gpu_config) @@ -125,24 +126,6 @@ class YOLOv3DarkNet53Pedestrian(hub.Module): res.extend(output) return res - def save_inference_model(self, dirname, model_filename=None, params_filename=None, combined=True): - if combined: - model_filename = "__model__" if not model_filename else model_filename - params_filename = "__params__" if not params_filename else params_filename - place = paddle.CPUPlace() - exe = paddle.Executor(place) - - program, feeded_var_names, target_vars = paddle.static.load_inference_model( - dirname=self.default_pretrained_model_path, executor=exe) - - paddle.static.save_inference_model(dirname=dirname, - main_program=program, - executor=exe, - feeded_var_names=feeded_var_names, - target_vars=target_vars, - model_filename=model_filename, - params_filename=params_filename) - @serving def serving_method(self, images, **kwargs): """ diff --git a/modules/image/object_detection/yolov3_darknet53_pedestrian/processor.py b/modules/image/object_detection/yolov3_darknet53_pedestrian/processor.py index 356ce0342b2eb0536ffbd4d1420c7f21b3124431..25390dcf85832d28f83348b5dd47aa9294890ee9 100644 --- a/modules/image/object_detection/yolov3_darknet53_pedestrian/processor.py +++ b/modules/image/object_detection/yolov3_darknet53_pedestrian/processor.py @@ -89,7 +89,7 @@ def load_label_info(file_path): def postprocess(paths, images, data_out, score_thresh, label_names, output_dir, handle_id, visualization=True): """ - postprocess the lod_tensor produced by fluid.Executor.run + postprocess the lod_tensor produced by Executor.run Args: paths (list[str]): The paths of images. diff --git a/modules/image/object_detection/yolov3_darknet53_pedestrian/test.py b/modules/image/object_detection/yolov3_darknet53_pedestrian/test.py new file mode 100644 index 0000000000000000000000000000000000000000..72a015d8c75b06f554b8f7dbdb51031461103f1a --- /dev/null +++ b/modules/image/object_detection/yolov3_darknet53_pedestrian/test.py @@ -0,0 +1,108 @@ +import os +import shutil +import unittest + +import cv2 +import requests +import paddlehub as hub + + +class TestHubModule(unittest.TestCase): + @classmethod + def setUpClass(cls) -> None: + img_url = 'https://ai-studio-static-online.cdn.bcebos.com/15310014bf794c87a1e3b289d904ecae122aafe8c8fe47fd98634e79a8e4012f' + if not os.path.exists('tests'): + os.makedirs('tests') + response = requests.get(img_url) + assert response.status_code == 200, 'Network Error.' + with open('tests/test.jpg', 'wb') as f: + f.write(response.content) + cls.module = hub.Module(name="yolov3_darknet53_pedestrian") + + @classmethod + def tearDownClass(cls) -> None: + shutil.rmtree('tests') + shutil.rmtree('inference') + shutil.rmtree('yolov3_pedestrian_detect_output') + + def test_object_detection1(self): + results = self.module.object_detection( + paths=['tests/test.jpg'] + ) + bbox = results[0]['data'][0] + label = bbox['label'] + confidence = bbox['confidence'] + left = bbox['left'] + right = bbox['right'] + top = bbox['top'] + bottom = bbox['bottom'] + + self.assertEqual(label, 'pedestrian') + self.assertTrue(confidence > 0.5) + self.assertTrue(0 < left < 1000) + self.assertTrue(1000 < right < 3500) + self.assertTrue(500 < top < 1500) + self.assertTrue(1000 < bottom < 4500) + + def test_object_detection2(self): + results = self.module.object_detection( + images=[cv2.imread('tests/test.jpg')] + ) + bbox = results[0]['data'][0] + label = bbox['label'] + confidence = bbox['confidence'] + left = bbox['left'] + right = bbox['right'] + top = bbox['top'] + bottom = bbox['bottom'] + + self.assertEqual(label, 'pedestrian') + self.assertTrue(confidence > 0.5) + self.assertTrue(0 < left < 1000) + self.assertTrue(1000 < right < 3500) + self.assertTrue(500 < top < 1500) + self.assertTrue(1000 < bottom < 4500) + + def test_object_detection3(self): + results = self.module.object_detection( + images=[cv2.imread('tests/test.jpg')], + visualization=False + ) + bbox = results[0]['data'][0] + label = bbox['label'] + confidence = bbox['confidence'] + left = bbox['left'] + right = bbox['right'] + top = bbox['top'] + bottom = bbox['bottom'] + + self.assertEqual(label, 'pedestrian') + self.assertTrue(confidence > 0.5) + self.assertTrue(0 < left < 1000) + self.assertTrue(1000 < right < 3500) + self.assertTrue(500 < top < 1500) + self.assertTrue(1000 < bottom < 4500) + + def test_object_detection4(self): + self.assertRaises( + AssertionError, + self.module.object_detection, + paths=['no.jpg'] + ) + + def test_object_detection5(self): + self.assertRaises( + AttributeError, + self.module.object_detection, + images=['test.jpg'] + ) + + def test_save_inference_model(self): + self.module.save_inference_model('./inference/model') + + self.assertTrue(os.path.exists('./inference/model.pdmodel')) + self.assertTrue(os.path.exists('./inference/model.pdiparams')) + + +if __name__ == "__main__": + unittest.main() \ No newline at end of file