From e4a319d3e4092092be388b7fb953a8bb6036f2a3 Mon Sep 17 00:00:00 2001 From: Steffy-zxf <48793257+Steffy-zxf@users.noreply.github.com> Date: Fri, 29 May 2020 15:39:50 +0800 Subject: [PATCH] add ernie-skep (chnsenticorp) (#627) --- .../efficientnetb0_small_imagenet/module.py | 2 +- .../module.py | 2 +- .../mobilenet_v2_animals/module.py | 2 +- .../mobilenet_v2_dishes/module.py | 2 +- .../mobilenet_v2_imagenet_ssld/module.py | 2 +- .../module.py | 2 +- .../module.py | 2 +- .../resnet18_vd_imagenet/module.py | 2 +- .../resnet50_vd_animals/module.py | 2 +- .../resnet50_vd_dishes/module.py | 2 +- .../resnet50_vd_imagenet_ssld/module.py | 2 +- .../resnet50_vd_wildanimals/module.py | 2 +- .../se_resnet18_vd_imagenet/module.py | 2 +- .../pyramidbox_face_detection/module.py | 2 +- .../pyramidbox_lite_mobile/module.py | 2 +- .../pyramidbox_lite_mobile_mask/module.py | 2 +- .../pyramidbox_lite_server/module.py | 2 +- .../pyramidbox_lite_server_mask/module.py | 2 +- .../module.py | 2 +- .../module.py | 2 +- .../face_landmark_localization/module.py | 2 +- .../faster_rcnn_resnet50_coco2017/module.py | 2 +- .../module.py | 2 +- .../retinanet_resnet50_fpn_coco2017/module.py | 2 +- .../ssd_mobilenet_v1_pascal/module.py | 2 +- .../ssd_vgg16_512_coco2017/module.py | 2 +- .../yolov3_darknet53_coco2017/module.py | 2 +- .../yolov3_darknet53_pedestrian/module.py | 2 +- .../yolov3_darknet53_vehicles/module.py | 2 +- .../yolov3_mobilenet_v1_coco2017/module.py | 2 +- .../yolov3_resnet34_coco2017/module.py | 2 +- .../yolov3_resnet50_vd_coco2017/module.py | 2 +- .../semantic_segmentation/ace2p/module.py | 2 +- .../deeplabv3p_xception65_humanseg/module.py | 2 +- .../stylepro_artistic/module.py | 2 +- .../ernie_skep_sentiment_analysis/README.md | 152 + .../assets/ernie_1.0_large_ch.config.json | 14 + .../assets/ernie_1.0_large_ch.vocab.txt | 12089 ++++++++++++++++ .../model/__init__.py | 0 .../model/ernie.py | 377 + .../model/transformer_encoder.py | 501 + .../ernie_skep_sentiment_analysis/module.py | 258 + .../configs/ernie_skep_sentiment_analysis.yml | 9 + .../test_ernie_skep_sentiment_analysis.py | 129 + paddlehub/module/nlp_module.py | 2 - 45 files changed, 13564 insertions(+), 37 deletions(-) create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py create mode 100644 hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml create mode 100644 hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py diff --git a/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py b/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py index efd069f3..393092cb 100644 --- a/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py +++ b/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py @@ -175,7 +175,7 @@ class EfficientNetB0ImageNet(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py b/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py index 40a12edf..ffd4d064 100644 --- a/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py +++ b/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py @@ -161,7 +161,7 @@ class FixResnext10132x48dwslImagenet(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) if not self.predictor_set: diff --git a/hub_module/modules/image/classification/mobilenet_v2_animals/module.py b/hub_module/modules/image/classification/mobilenet_v2_animals/module.py index 87f6f53a..b8afcae0 100644 --- a/hub_module/modules/image/classification/mobilenet_v2_animals/module.py +++ b/hub_module/modules/image/classification/mobilenet_v2_animals/module.py @@ -161,7 +161,7 @@ class MobileNetV2Animals(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py b/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py index 3b9abdd5..f1be00a3 100644 --- a/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py +++ b/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py @@ -161,7 +161,7 @@ class MobileNetV2Dishes(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py index 598d7112..a2bacc74 100644 --- a/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py +++ b/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py @@ -184,7 +184,7 @@ class MobileNetV2ImageNetSSLD(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py index fcbe7374..07dd93a7 100644 --- a/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py +++ b/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py @@ -161,7 +161,7 @@ class MobileNetV3Large(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py index 4c447dbf..5e24ce93 100644 --- a/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py +++ b/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py @@ -161,7 +161,7 @@ class MobileNetV3Small(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py b/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py index 9870a5db..8171f3f0 100644 --- a/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py +++ b/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py @@ -161,7 +161,7 @@ class ResNet18vdImageNet(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) if not self.predictor_set: diff --git a/hub_module/modules/image/classification/resnet50_vd_animals/module.py b/hub_module/modules/image/classification/resnet50_vd_animals/module.py index 5c555eba..ed6abe6a 100644 --- a/hub_module/modules/image/classification/resnet50_vd_animals/module.py +++ b/hub_module/modules/image/classification/resnet50_vd_animals/module.py @@ -161,7 +161,7 @@ class ResNet50vdAnimals(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/resnet50_vd_dishes/module.py b/hub_module/modules/image/classification/resnet50_vd_dishes/module.py index fb2f3de8..b554a8fc 100644 --- a/hub_module/modules/image/classification/resnet50_vd_dishes/module.py +++ b/hub_module/modules/image/classification/resnet50_vd_dishes/module.py @@ -161,7 +161,7 @@ class ResNet50vdDishes(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py b/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py index 9464a722..380eb839 100644 --- a/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py +++ b/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py @@ -161,7 +161,7 @@ class ResNet50vdDishes(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py b/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py index 14fd2f9c..3a8d811a 100644 --- a/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py +++ b/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py @@ -161,7 +161,7 @@ class ResNet50vdWildAnimals(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_data = list() diff --git a/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py b/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py index ec219bd8..4e6d6db7 100644 --- a/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py +++ b/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py @@ -161,7 +161,7 @@ class SEResNet18vdImageNet(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) if not self.predictor_set: diff --git a/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py b/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py index de0354e2..c62b8f43 100644 --- a/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py +++ b/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py @@ -83,7 +83,7 @@ class PyramidBoxFaceDetection(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py index 9e30c589..77d05bc3 100644 --- a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py +++ b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py @@ -81,7 +81,7 @@ class PyramidBoxLiteMobile(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py index 391aaedf..91b1adfa 100644 --- a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py +++ b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py @@ -107,7 +107,7 @@ class PyramidBoxLiteMobileMask(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py index fe9b3b84..739739b7 100644 --- a/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py +++ b/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py @@ -81,7 +81,7 @@ class PyramidBoxLiteServer(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py index 8fd45be7..59270c64 100644 --- a/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py +++ b/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py @@ -106,7 +106,7 @@ class PyramidBoxLiteServerMask(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py index dafd8525..8237b7f3 100644 --- a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py +++ b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py @@ -107,7 +107,7 @@ class FaceDetector320(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py index 32075ed6..16352378 100644 --- a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py +++ b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py @@ -106,7 +106,7 @@ class FaceDetector640(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py b/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py index 7c8d25d6..5b21ad79 100644 --- a/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py +++ b/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py @@ -133,7 +133,7 @@ class FaceLandmarkLocalization(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # get all data diff --git a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py index b65aa88e..c61cc84a 100644 --- a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py +++ b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py @@ -323,7 +323,7 @@ class FasterRCNNResNet50(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() if data and 'image' in data: diff --git a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py index c64f1297..f84521ac 100644 --- a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py +++ b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py @@ -333,7 +333,7 @@ class FasterRCNNResNet50RPN(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py b/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py index 4025bb87..83effbdb 100644 --- a/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py +++ b/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py @@ -240,7 +240,7 @@ class RetinaNetResNet50FPN(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) all_images = list() diff --git a/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py b/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py index 315bb2dd..a433d779 100644 --- a/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py +++ b/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py @@ -194,7 +194,7 @@ class SSDMobileNetv1(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py b/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py index a0514153..bdf252ad 100644 --- a/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py +++ b/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py @@ -200,7 +200,7 @@ class SSDVGG16_512(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py index 9ffe7022..f3ebbda1 100644 --- a/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py +++ b/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py @@ -186,7 +186,7 @@ class YOLOv3DarkNet53Coco2017(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py index 6f76e25c..1258b757 100644 --- a/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py +++ b/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py @@ -199,7 +199,7 @@ class YOLOv3DarkNet53Pedestrian(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py index 685afbff..e1a064cd 100644 --- a/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py +++ b/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py @@ -199,7 +199,7 @@ class YOLOv3DarkNet53Vehicles(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py index 03bde930..674e6aa5 100644 --- a/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py +++ b/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py @@ -189,7 +189,7 @@ class YOLOv3MobileNetV1Coco2017(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py index 98712df2..54f4f427 100644 --- a/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py +++ b/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py @@ -191,7 +191,7 @@ class YOLOv3ResNet34Coco2017(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py index 4e5a4d05..2e65abfe 100644 --- a/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py +++ b/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py @@ -193,7 +193,7 @@ class YOLOv3ResNet50Coco2017(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) paths = paths if paths else list() diff --git a/hub_module/modules/image/semantic_segmentation/ace2p/module.py b/hub_module/modules/image/semantic_segmentation/ace2p/module.py index 149b981e..d8908525 100644 --- a/hub_module/modules/image/semantic_segmentation/ace2p/module.py +++ b/hub_module/modules/image/semantic_segmentation/ace2p/module.py @@ -86,7 +86,7 @@ class ACE2P(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py b/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py index 84c4b762..b6f0f227 100644 --- a/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py +++ b/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py @@ -82,7 +82,7 @@ class DeeplabV3pXception65HumanSeg(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) # compatibility with older versions diff --git a/hub_module/modules/image/style_transfer/stylepro_artistic/module.py b/hub_module/modules/image/style_transfer/stylepro_artistic/module.py index 86373516..7fc14612 100644 --- a/hub_module/modules/image/style_transfer/stylepro_artistic/module.py +++ b/hub_module/modules/image/style_transfer/stylepro_artistic/module.py @@ -104,7 +104,7 @@ class StyleProjection(hub.Module): int(_places[0]) except: raise RuntimeError( - "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly." + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." ) im_output = [] diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md new file mode 100644 index 00000000..46417e6f --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md @@ -0,0 +1,152 @@ +## 概述 + +SKEP(Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis)是百度研究团队在2020年提出的基于情感知识增强的情感预训练算法,此算法采用无监督方法自动挖掘情感知识,然后利用情感知识构建预训练目标,从而让机器学会理解情感语义,在14项中英情感分析典型任务上全面超越SOTA,相关工作已经被ACL 2020录用。SKEP为各类情感分析任务提供统一且强大的情感语义表示。ernie_skep_sentiment_analysis Module可用于句子级情感分析任务预测。其在预训练时使用ERNIE 1.0 large预训练参数作为其网络参数初始化继续预训练。同时,该Module支持完成句子级情感分析任务迁移学习Fine-tune。 + +

+
+

+ +更多详情参考ACL 2020论文[SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis](https://arxiv.org/abs/2005.05635) + +## 命令行预测 + +```shell +$ hub run ernie_skep_sentiment_analysis --input_text='虽然小明很努力,但是他还是没有考100分' +``` + +## API + +```python +def predict_sentiment(texts=[], use_gpu=False) +``` + +预测API,分类输入文本的情感极性。 + +**参数** + +* texts (list\[str\]): 待预测文本; +* use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量**; + +**返回** + +* res (list\[dict\]): 情感分类结果的列表,列表中每一个元素为 dict,各字段为: + * text(str): 输入预测文本 + * sentiment_label(str): 情感分类结果,或为positive或为negative + * positive_probs: 输入预测文本情感极性属于positive的概率 + * negative_probs: 输入预测文本情感极性属于negative的概率 + +```python +def context(trainable=True, max_seq_len=128) +``` +用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本 + +**参数** +* trainable(bool): 设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。 +* max_seq_len(int): SKEP模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512; + +**返回** +* inputs: dict类型,各字段为: + * input_ids(Variable): Token Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型; + * position_id(Variable): Position Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型; + * segment_ids(Variable): Sentence Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型; + * input_mask(Variable): token是否为padding的标识,shape为\[batch_size, max_seq_len\],dtype为int64类型; + +* outputs:dict类型,Module的输出特征,各字段为: + * pooled_output(Variable): 句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],dtype为int64类型; + * sequence_output(Variable): 字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],dtype为int64类型; + +* program:包含该Module计算图的Program。 + +```python +def get_embedding(texts, use_gpu=False, batch_size=1) +``` + +用于获取输入文本的句子粒度特征与字粒度特征 + +**参数** + +* texts(list):输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。 +* use_gpu(bool):是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量**; + +**返回** + +* results(list): embedding特征,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。 + +```python +def get_params_layer() +``` + +用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。 + +**参数** + +* 无 + +**返回** + +* params_layer(dict): key为参数名,值为参数所在层数 + +**代码示例** + +情感极性预测代码示例: + +```python +import paddlehub as hub + +# Load ernie_skep_sentiment_analysis module. +module = hub.Module(name="ernie_skep_sentiment_analysis") + +# Predict sentiment label +test_texts = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分'] +results = module.predict_sentiment(test_texts, use_gpu=False) +``` + +## 服务部署 + +PaddleHub Serving 可以部署一个目标检测的在线服务。 + +### 第一步:启动PaddleHub Serving + +运行启动命令: +```shell +$ hub serving start -m ernie_skep_sentiment_analysis +``` + +这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。 + +**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。 + +### 第二步:发送预测请求 + +配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果 + +```python +import requests +import json + +# 发送HTTP请求 +data = {'texts':['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分']} +headers = {"Content-type": "application/json"} +url = "http://127.0.0.1:8866/predict/ernie_skep_sentiment_analysis" +r = requests.post(url=url, headers=headers, data=json.dumps(data)) + +# 打印预测结果 +print(r.json()["results"]) +``` + +## 查看代码 + +https://github.com/baidu/Senta + +### 依赖 + +paddlepaddle >= 1.8.0 + +paddlehub >= 1.7.0 + + +## 更新历史 + +* 1.0.0 + + 初始发布 diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json new file mode 100644 index 00000000..75c3303b --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json @@ -0,0 +1,14 @@ +{ + "attention_probs_dropout_prob": 0.1, + "hidden_act": "relu", + "hidden_dropout_prob": 0.1, + "hidden_size": 1024, + "initializer_range": 0.02, + "max_position_embeddings": 512, + "num_attention_heads": 16, + "num_hidden_layers": 24, + "sent_type_vocab_size": 4, + "task_type_vocab_size": 16, + "vocab_size": 12800, + "use_task_id": false +} diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt new file mode 100644 index 00000000..e9604e7a --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt @@ -0,0 +1,12089 @@ +[PAD] 0 +[CLS] 1 +[SEP] 2 +[MASK] 3 +, 4 +的 5 +、 6 +一 7 +人 8 +有 9 +是 10 +在 11 +中 12 +为 13 +和 14 +了 15 +不 16 +年 17 +学 18 +大 19 +国 20 +生 21 +以 22 +“ 23 +” 24 +作 25 +业 26 +个 27 +上 28 +用 29 +, 30 +地 31 +会 32 +成 33 +发 34 +工 35 +时 36 +于 37 +理 38 +出 39 +行 40 +要 41 +. 42 +等 43 +他 44 +到 45 +之 46 +这 47 +可 48 +后 49 +家 50 +对 51 +能 52 +公 53 +与 54 +》 55 +《 56 +主 57 +方 58 +分 59 +经 60 +来 61 +全 62 +其 63 +部 64 +多 65 +产 66 +自 67 +文 68 +高 69 +动 70 +进 71 +法 72 +化 73 +: 74 +我 75 +面 76 +) 77 +( 78 +实 79 +教 80 +建 81 +体 82 +而 83 +长 84 +子 85 +下 86 +现 87 +开 88 +本 89 +力 90 +定 91 +性 92 +过 93 +设 94 +合 95 +小 96 +同 97 +机 98 +市 99 +品 100 +水 101 +新 102 +内 103 +事 104 +也 105 +种 106 +及 107 +制 108 +入 109 +所 110 +心 111 +务 112 +就 113 +管 114 +们 115 +得 116 +展 117 +重 118 +民 119 +加 120 +区 121 +物 122 +者 123 +通 124 +天 125 +政 126 +三 127 +电 128 +关 129 +度 130 +第 131 +名 132 +术 133 +最 134 +系 135 +月 136 +外 137 +资 138 +日 139 +代 140 +员 141 +如 142 +间 143 +位 144 +并 145 +书 146 +科 147 +村 148 +应 149 +量 150 +道 151 +前 152 +当 153 +无 154 +里 155 +相 156 +平 157 +从 158 +计 159 +提 160 +保 161 +任 162 +程 163 +技 164 +都 165 +研 166 +十 167 +基 168 +特 169 +好 170 +被 171 +或 172 +目 173 +将 174 +使 175 +山 176 +二 177 +说 178 +数 179 +点 180 +明 181 +情 182 +元 183 +着 184 +收 185 +组 186 +然 187 +美 188 +各 189 +由 190 +场 191 +金 192 +形 193 +农 194 +期 195 +因 196 +表 197 +此 198 +色 199 +起 200 +还 201 +立 202 +世 203 +安 204 +活 205 +专 206 +质 207 +1 208 +规 209 +社 210 +万 211 +信 212 +西 213 +统 214 +结 215 +路 216 +利 217 +次 218 +南 219 +式 220 +意 221 +级 222 +常 223 +师 224 +校 225 +你 226 +育 227 +果 228 +究 229 +司 230 +服 231 +门 232 +海 233 +导 234 +流 235 +项 236 +她 237 +总 238 +处 239 +两 240 +传 241 +东 242 +正 243 +省 244 +院 245 +户 246 +手 247 +具 248 +2 249 +原 250 +强 251 +北 252 +向 253 +先 254 +但 255 +米 256 +城 257 +企 258 +件 259 +风 260 +军 261 +身 262 +更 263 +知 264 +已 265 +气 266 +战 267 +至 268 +单 269 +口 270 +集 271 +创 272 +解 273 +四 274 +标 275 +交 276 +比 277 +商 278 +论 279 +界 280 +题 281 +变 282 +花 283 +3 284 +改 285 +类 286 +运 287 +指 288 +型 289 +调 290 +女 291 +神 292 +接 293 +造 294 +受 295 +广 296 +只 297 +委 298 +去 299 +共 300 +治 301 +达 302 +持 303 +条 304 +网 305 +头 306 +构 307 +县 308 +些 309 +该 310 +又 311 +那 312 +想 313 +样 314 +办 315 +济 316 +5 317 +格 318 +责 319 +车 320 +很 321 +施 322 +求 323 +己 324 +光 325 +精 326 +林 327 +完 328 +爱 329 +线 330 +参 331 +少 332 +积 333 +清 334 +看 335 +优 336 +报 337 +王 338 +直 339 +没 340 +每 341 +据 342 +游 343 +效 344 +感 345 +五 346 +影 347 +别 348 +获 349 +领 350 +称 351 +选 352 +供 353 +乐 354 +老 355 +么 356 +台 357 +问 358 +划 359 +带 360 +器 361 +源 362 +织 363 +放 364 +深 365 +备 366 +视 367 +白 368 +功 369 +取 370 +装 371 +营 372 +见 373 +记 374 +环 375 +队 376 +节 377 +准 378 +石 379 +它 380 +回 381 +历 382 +负 383 +真 384 +增 385 +医 386 +联 387 +做 388 +职 389 +容 390 +士 391 +包 392 +义 393 +观 394 +团 395 +病 396 +4 397 +府 398 +息 399 +则 400 +考 401 +料 402 +华 403 +州 404 +语 405 +证 406 +整 407 +让 408 +江 409 +史 410 +空 411 +验 412 +需 413 +支 414 +命 415 +给 416 +离 417 +认 418 +艺 419 +较 420 +土 421 +古 422 +养 423 +才 424 +境 425 +推 426 +把 427 +均 428 +图 429 +际 430 +斯 431 +近 432 +片 433 +局 434 +修 435 +字 436 +德 437 +权 438 +步 439 +始 440 +复 441 +转 442 +协 443 +即 444 +打 445 +画 446 +投 447 +决 448 +何 449 +约 450 +反 451 +quot 452 +费 453 +议 454 +护 455 +极 456 +河 457 +房 458 +查 459 +布 460 +思 461 +干 462 +价 463 +儿 464 +非 465 +马 466 +党 467 +奖 468 +模 469 +故 470 +编 471 +音 472 +范 473 +识 474 +率 475 +存 476 +引 477 +客 478 +属 479 +评 480 +采 481 +尔 482 +配 483 +镇 484 +室 485 +再 486 +案 487 +监 488 +习 489 +注 490 +根 491 +克 492 +演 493 +食 494 +族 495 +示 496 +球 497 +状 498 +青 499 +号 500 +张 501 +百 502 +素 503 +首 504 +易 505 +热 506 +阳 507 +今 508 +园 509 +防 510 +版 511 +太 512 +乡 513 +英 514 +6 515 +材 516 +列 517 +便 518 +写 519 +住 520 +置 521 +层 522 +助 523 +确 524 +试 525 +难 526 +承 527 +象 528 +居 529 +10 530 +黄 531 +快 532 +断 533 +维 534 +却 535 +红 536 +速 537 +连 538 +众 539 +0 540 +细 541 +态 542 +话 543 +周 544 +言 545 +药 546 +培 547 +血 548 +亩 549 +龙 550 +越 551 +值 552 +几 553 +边 554 +读 555 +未 556 +曾 557 +测 558 +算 559 +京 560 +景 561 +余 562 +站 563 +低 564 +温 565 +消 566 +必 567 +切 568 +依 569 +随 570 +且 571 +志 572 +卫 573 +域 574 +照 575 +许 576 +限 577 +著 578 +销 579 +落 580 +足 581 +适 582 +争 583 +策 584 +8 585 +控 586 +武 587 +按 588 +7 589 +初 590 +角 591 +核 592 +死 593 +检 594 +富 595 +满 596 +显 597 +审 598 +除 599 +致 600 +亲 601 +占 602 +失 603 +星 604 +章 605 +善 606 +续 607 +千 608 +叶 609 +火 610 +副 611 +告 612 +段 613 +什 614 +声 615 +终 616 +况 617 +走 618 +木 619 +益 620 +戏 621 +独 622 +纪 623 +植 624 +财 625 +群 626 +六 627 +赛 628 +远 629 +拉 630 +亚 631 +密 632 +排 633 +超 634 +像 635 +课 636 +围 637 +往 638 +响 639 +击 640 +疗 641 +念 642 +八 643 +云 644 +险 645 +律 646 +请 647 +革 648 +诗 649 +批 650 +底 651 +压 652 +双 653 +男 654 +训 655 +例 656 +汉 657 +升 658 +拥 659 +势 660 +酒 661 +眼 662 +官 663 +牌 664 +油 665 +曲 666 +友 667 +望 668 +黑 669 +歌 670 +筑 671 +础 672 +香 673 +仅 674 +担 675 +括 676 +湖 677 +严 678 +秀 679 +剧 680 +九 681 +举 682 +执 683 +充 684 +兴 685 +督 686 +博 687 +草 688 +般 689 +李 690 +健 691 +喜 692 +授 693 +普 694 +预 695 +灵 696 +突 697 +良 698 +款 699 +罗 700 +9 701 +微 702 +七 703 +录 704 +朝 705 +飞 706 +宝 707 +令 708 +轻 709 +劳 710 +距 711 +异 712 +简 713 +兵 714 +树 715 +序 716 +候 717 +含 718 +福 719 +尽 720 +留 721 +20 722 +丰 723 +旅 724 +征 725 +临 726 +破 727 +移 728 +篇 729 +抗 730 +典 731 +端 732 +苏 733 +奇 734 +止 735 +康 736 +店 737 +毛 738 +觉 739 +春 740 +售 741 +络 742 +降 743 +板 744 +坚 745 +母 746 +讲 747 +早 748 +印 749 +略 750 +孩 751 +夫 752 +藏 753 +铁 754 +害 755 +互 756 +帝 757 +田 758 +融 759 +皮 760 +宗 761 +岁 762 +载 763 +析 764 +斗 765 +须 766 +伤 767 +12 768 +介 769 +另 770 +00 771 +半 772 +班 773 +馆 774 +味 775 +楼 776 +卡 777 +射 778 +述 779 +杀 780 +波 781 +绿 782 +免 783 +兰 784 +绝 785 +刻 786 +短 787 +察 788 +输 789 +择 790 +综 791 +杂 792 +份 793 +纳 794 +父 795 +词 796 +银 797 +送 798 +座 799 +左 800 +继 801 +固 802 +宣 803 +厂 804 +肉 805 +换 806 +补 807 +税 808 +派 809 +套 810 +欢 811 +播 812 +吸 813 +圆 814 +攻 815 +阿 816 +购 817 +听 818 +右 819 +减 820 +激 821 +巴 822 +背 823 +够 824 +遇 825 +智 826 +玉 827 +找 828 +宽 829 +陈 830 +练 831 +追 832 +毕 833 +彩 834 +软 835 +帮 836 +股 837 +荣 838 +托 839 +予 840 +佛 841 +堂 842 +障 843 +皇 844 +若 845 +守 846 +似 847 +届 848 +待 849 +货 850 +散 851 +额 852 +30 853 +尚 854 +穿 855 +丽 856 +骨 857 +享 858 +差 859 +针 860 +索 861 +稳 862 +宁 863 +贵 864 +酸 865 +液 866 +唐 867 +操 868 +探 869 +玩 870 +促 871 +笔 872 +库 873 +救 874 +虽 875 +久 876 +闻 877 +顶 878 +床 879 +港 880 +鱼 881 +亿 882 +登 883 +11 884 +永 885 +毒 886 +桥 887 +冷 888 +魔 889 +秘 890 +陆 891 +您 892 +童 893 +归 894 +侧 895 +沙 896 +染 897 +封 898 +紧 899 +松 900 +川 901 +刘 902 +15 903 +雄 904 +希 905 +毫 906 +卷 907 +某 908 +季 909 +菜 910 +庭 911 +附 912 +逐 913 +夜 914 +宫 915 +洲 916 +退 917 +顾 918 +尼 919 +胜 920 +剂 921 +纯 922 +舞 923 +遗 924 +苦 925 +梦 926 +挥 927 +航 928 +愿 929 +街 930 +招 931 +矿 932 +夏 933 +盖 934 +献 935 +怎 936 +茶 937 +申 938 +39 939 +吧 940 +脑 941 +亦 942 +吃 943 +频 944 +宋 945 +央 946 +威 947 +厚 948 +块 949 +冲 950 +叫 951 +熟 952 +礼 953 +厅 954 +否 955 +渐 956 +笑 957 +钱 958 +钟 959 +甚 960 +牛 961 +丝 962 +靠 963 +岛 964 +绍 965 +盘 966 +缘 967 +聚 968 +静 969 +雨 970 +氏 971 +圣 972 +顺 973 +唱 974 +刊 975 +阶 976 +困 977 +急 978 +饰 979 +弹 980 +庄 981 +既 982 +野 983 +阴 984 +混 985 +饮 986 +损 987 +齐 988 +末 989 +错 990 +轮 991 +宜 992 +鲜 993 +兼 994 +敌 995 +粉 996 +祖 997 +延 998 +100 999 +钢 1000 +辑 1001 +欧 1002 +硬 1003 +甲 1004 +诉 1005 +册 1006 +痛 1007 +订 1008 +缺 1009 +晚 1010 +衣 1011 +佳 1012 +脉 1013 +gt 1014 +盛 1015 +乎 1016 +拟 1017 +贸 1018 +扩 1019 +船 1020 +仪 1021 +谁 1022 +警 1023 +50 1024 +停 1025 +席 1026 +竞 1027 +释 1028 +庆 1029 +汽 1030 +仍 1031 +掌 1032 +诸 1033 +仙 1034 +弟 1035 +吉 1036 +洋 1037 +奥 1038 +票 1039 +危 1040 +架 1041 +买 1042 +径 1043 +塔 1044 +休 1045 +付 1046 +恶 1047 +雷 1048 +怀 1049 +秋 1050 +借 1051 +巨 1052 +透 1053 +誉 1054 +厘 1055 +句 1056 +跟 1057 +胞 1058 +婚 1059 +幼 1060 +烈 1061 +峰 1062 +寻 1063 +君 1064 +汇 1065 +趣 1066 +纸 1067 +假 1068 +肥 1069 +患 1070 +杨 1071 +雅 1072 +罪 1073 +谓 1074 +亮 1075 +脱 1076 +寺 1077 +烟 1078 +判 1079 +绩 1080 +乱 1081 +刚 1082 +摄 1083 +洞 1084 +践 1085 +码 1086 +启 1087 +励 1088 +呈 1089 +曰 1090 +呢 1091 +符 1092 +哥 1093 +媒 1094 +疾 1095 +坐 1096 +雪 1097 +孔 1098 +倒 1099 +旧 1100 +菌 1101 +岩 1102 +鼓 1103 +亡 1104 +访 1105 +症 1106 +暗 1107 +湾 1108 +幸 1109 +池 1110 +讨 1111 +努 1112 +露 1113 +吗 1114 +繁 1115 +途 1116 +殖 1117 +败 1118 +蛋 1119 +握 1120 +刺 1121 +耕 1122 +洗 1123 +沉 1124 +概 1125 +哈 1126 +泛 1127 +凡 1128 +残 1129 +隐 1130 +虫 1131 +朋 1132 +虚 1133 +餐 1134 +殊 1135 +慢 1136 +询 1137 +蒙 1138 +孙 1139 +谈 1140 +鲁 1141 +裂 1142 +贴 1143 +污 1144 +漫 1145 +谷 1146 +违 1147 +泉 1148 +拿 1149 +森 1150 +横 1151 +扬 1152 +键 1153 +膜 1154 +迁 1155 +尤 1156 +涉 1157 +净 1158 +诚 1159 +折 1160 +冰 1161 +械 1162 +拍 1163 +梁 1164 +沿 1165 +避 1166 +吴 1167 +惊 1168 +犯 1169 +灭 1170 +湿 1171 +迷 1172 +姓 1173 +阅 1174 +灯 1175 +妇 1176 +触 1177 +冠 1178 +答 1179 +俗 1180 +档 1181 +尊 1182 +谢 1183 +措 1184 +筹 1185 +竟 1186 +韩 1187 +签 1188 +剑 1189 +鉴 1190 +灾 1191 +贯 1192 +迹 1193 +洛 1194 +沟 1195 +束 1196 +翻 1197 +巧 1198 +坏 1199 +弱 1200 +零 1201 +壁 1202 +枝 1203 +映 1204 +恩 1205 +抓 1206 +屋 1207 +呼 1208 +脚 1209 +绘 1210 +40 1211 +淡 1212 +辖 1213 +2010 1214 +伊 1215 +粒 1216 +欲 1217 +震 1218 +伯 1219 +私 1220 +蓝 1221 +甘 1222 +储 1223 +胡 1224 +卖 1225 +梅 1226 +16 1227 +耳 1228 +疑 1229 +润 1230 +伴 1231 +泽 1232 +牧 1233 +烧 1234 +尾 1235 +累 1236 +糖 1237 +怪 1238 +唯 1239 +莫 1240 +粮 1241 +柱 1242 +18 1243 +竹 1244 +灰 1245 +岸 1246 +缩 1247 +井 1248 +伦 1249 +柔 1250 +盟 1251 +珠 1252 +丹 1253 +amp 1254 +皆 1255 +哪 1256 +迎 1257 +颜 1258 +衡 1259 +啊 1260 +塑 1261 +寒 1262 +13 1263 +紫 1264 +镜 1265 +25 1266 +氧 1267 +误 1268 +伍 1269 +彻 1270 +刀 1271 +览 1272 +炎 1273 +津 1274 +耐 1275 +秦 1276 +尖 1277 +潮 1278 +描 1279 +浓 1280 +召 1281 +禁 1282 +阻 1283 +胶 1284 +译 1285 +腹 1286 +泰 1287 +乃 1288 +盐 1289 +潜 1290 +鸡 1291 +诺 1292 +遍 1293 +2000 1294 +纹 1295 +冬 1296 +牙 1297 +麻 1298 +辅 1299 +猪 1300 +弃 1301 +楚 1302 +羊 1303 +晋 1304 +14 1305 +鸟 1306 +赵 1307 +洁 1308 +谋 1309 +隆 1310 +滑 1311 +60 1312 +2008 1313 +籍 1314 +臣 1315 +朱 1316 +泥 1317 +墨 1318 +辆 1319 +墙 1320 +浪 1321 +姐 1322 +赏 1323 +纵 1324 +2006 1325 +拔 1326 +倍 1327 +纷 1328 +摩 1329 +壮 1330 +苗 1331 +偏 1332 +塞 1333 +贡 1334 +仁 1335 +宇 1336 +卵 1337 +瓦 1338 +枪 1339 +覆 1340 +殿 1341 +刑 1342 +贫 1343 +妈 1344 +幅 1345 +幕 1346 +忆 1347 +丁 1348 +估 1349 +废 1350 +萨 1351 +舍 1352 +详 1353 +旗 1354 +岗 1355 +洪 1356 +80 1357 +贝 1358 +2009 1359 +迅 1360 +凭 1361 +勇 1362 +雕 1363 +奏 1364 +旋 1365 +杰 1366 +煤 1367 +阵 1368 +乘 1369 +溪 1370 +奉 1371 +畜 1372 +挑 1373 +昌 1374 +硕 1375 +庙 1376 +惠 1377 +薄 1378 +逃 1379 +爆 1380 +哲 1381 +浙 1382 +珍 1383 +炼 1384 +栏 1385 +暴 1386 +币 1387 +隔 1388 +吨 1389 +倾 1390 +嘉 1391 +址 1392 +陶 1393 +绕 1394 +诊 1395 +遭 1396 +桃 1397 +魂 1398 +兽 1399 +豆 1400 +闲 1401 +箱 1402 +拓 1403 +燃 1404 +裁 1405 +晶 1406 +掉 1407 +脂 1408 +溶 1409 +顿 1410 +肤 1411 +虑 1412 +鬼 1413 +2007 1414 +灌 1415 +徐 1416 +龄 1417 +陵 1418 +恋 1419 +侵 1420 +坡 1421 +寿 1422 +勤 1423 +磨 1424 +妹 1425 +瑞 1426 +缓 1427 +轴 1428 +麦 1429 +羽 1430 +咨 1431 +凝 1432 +默 1433 +驻 1434 +敢 1435 +债 1436 +17 1437 +浮 1438 +幻 1439 +株 1440 +浅 1441 +敬 1442 +敏 1443 +陷 1444 +凤 1445 +坛 1446 +虎 1447 +乌 1448 +铜 1449 +御 1450 +乳 1451 +讯 1452 +循 1453 +圈 1454 +肌 1455 +妙 1456 +奋 1457 +忘 1458 +闭 1459 +墓 1460 +21 1461 +汤 1462 +忠 1463 +2005 1464 +跨 1465 +怕 1466 +振 1467 +宾 1468 +跑 1469 +屏 1470 +坦 1471 +粗 1472 +租 1473 +悲 1474 +伟 1475 +拜 1476 +24 1477 +妻 1478 +赞 1479 +兄 1480 +宿 1481 +碑 1482 +貌 1483 +勒 1484 +罚 1485 +夺 1486 +偶 1487 +截 1488 +纤 1489 +2011 1490 +齿 1491 +郑 1492 +聘 1493 +偿 1494 +扶 1495 +豪 1496 +慧 1497 +跳 1498 +the 1499 +疏 1500 +莱 1501 +腐 1502 +插 1503 +恐 1504 +郎 1505 +辞 1506 +挂 1507 +娘 1508 +肿 1509 +徒 1510 +伏 1511 +磁 1512 +杯 1513 +丛 1514 +旨 1515 +琴 1516 +19 1517 +炮 1518 +醒 1519 +砖 1520 +替 1521 +辛 1522 +暖 1523 +锁 1524 +杜 1525 +肠 1526 +孤 1527 +饭 1528 +脸 1529 +邮 1530 +贷 1531 +lt 1532 +俄 1533 +毁 1534 +荷 1535 +谐 1536 +荒 1537 +肝 1538 +链 1539 +2004 1540 +2012 1541 +尺 1542 +尘 1543 +援 1544 +a 1545 +疫 1546 +崇 1547 +恢 1548 +扎 1549 +伸 1550 +幽 1551 +抵 1552 +胸 1553 +谱 1554 +舒 1555 +迫 1556 +200 1557 +畅 1558 +泡 1559 +岭 1560 +喷 1561 +70 1562 +窗 1563 +捷 1564 +宏 1565 +肯 1566 +90 1567 +狂 1568 +铺 1569 +骑 1570 +抽 1571 +券 1572 +俱 1573 +徽 1574 +胆 1575 +碎 1576 +邀 1577 +褐 1578 +斤 1579 +涂 1580 +赋 1581 +署 1582 +颗 1583 +2003 1584 +渠 1585 +仿 1586 +迪 1587 +炉 1588 +辉 1589 +涵 1590 +耗 1591 +22 1592 +返 1593 +邻 1594 +斑 1595 +董 1596 +魏 1597 +午 1598 +娱 1599 +浴 1600 +尿 1601 +曼 1602 +锅 1603 +柳 1604 +舰 1605 +搭 1606 +旁 1607 +宅 1608 +趋 1609 +of 1610 +凉 1611 +赢 1612 +伙 1613 +爷 1614 +廷 1615 +戴 1616 +壤 1617 +奶 1618 +页 1619 +玄 1620 +驾 1621 +阔 1622 +轨 1623 +朗 1624 +捕 1625 +肾 1626 +稿 1627 +惯 1628 +侯 1629 +乙 1630 +渡 1631 +稍 1632 +恨 1633 +脏 1634 +2002 1635 +姆 1636 +腔 1637 +抱 1638 +杆 1639 +垂 1640 +赴 1641 +赶 1642 +莲 1643 +辽 1644 +荐 1645 +旦 1646 +妖 1647 +2013 1648 +稀 1649 +驱 1650 +沈 1651 +役 1652 +晓 1653 +亭 1654 +仲 1655 +澳 1656 +500 1657 +炸 1658 +绪 1659 +28 1660 +陕 1661 +and 1662 +23 1663 +恒 1664 +堡 1665 +纠 1666 +仇 1667 +懂 1668 +焦 1669 +搜 1670 +s 1671 +忍 1672 +贤 1673 +添 1674 +i 1675 +艾 1676 +赤 1677 +犹 1678 +尝 1679 +锦 1680 +稻 1681 +撰 1682 +填 1683 +衰 1684 +栽 1685 +邪 1686 +粘 1687 +跃 1688 +桌 1689 +胃 1690 +悬 1691 +c 1692 +翼 1693 +彼 1694 +睡 1695 +曹 1696 +刷 1697 +摆 1698 +悉 1699 +锋 1700 +26 1701 +摇 1702 +抢 1703 +乏 1704 +廉 1705 +鼠 1706 +盾 1707 +瓷 1708 +抑 1709 +埃 1710 +邦 1711 +遂 1712 +寸 1713 +渔 1714 +祥 1715 +胎 1716 +牵 1717 +壳 1718 +甜 1719 +卓 1720 +瓜 1721 +袭 1722 +遵 1723 +巡 1724 +逆 1725 +玛 1726 +韵 1727 +2001 1728 +桑 1729 +酷 1730 +赖 1731 +桂 1732 +郡 1733 +肃 1734 +仓 1735 +寄 1736 +塘 1737 +瘤 1738 +300 1739 +碳 1740 +搞 1741 +燕 1742 +蒸 1743 +允 1744 +忽 1745 +斜 1746 +穷 1747 +郁 1748 +囊 1749 +奔 1750 +昆 1751 +盆 1752 +愈 1753 +递 1754 +1000 1755 +黎 1756 +祭 1757 +怒 1758 +辈 1759 +腺 1760 +滚 1761 +暂 1762 +郭 1763 +璃 1764 +踪 1765 +芳 1766 +碍 1767 +肺 1768 +狱 1769 +冒 1770 +阁 1771 +砂 1772 +35 1773 +苍 1774 +揭 1775 +踏 1776 +颇 1777 +柄 1778 +闪 1779 +孝 1780 +葡 1781 +腾 1782 +茎 1783 +鸣 1784 +撤 1785 +仰 1786 +伐 1787 +丘 1788 +於 1789 +泪 1790 +荡 1791 +扰 1792 +纲 1793 +拼 1794 +欣 1795 +纽 1796 +癌 1797 +堆 1798 +27 1799 +菲 1800 +b 1801 +披 1802 +挖 1803 +寓 1804 +履 1805 +捐 1806 +悟 1807 +乾 1808 +嘴 1809 +钻 1810 +拳 1811 +吹 1812 +柏 1813 +遥 1814 +抚 1815 +忧 1816 +赠 1817 +霸 1818 +艰 1819 +淋 1820 +猫 1821 +帅 1822 +奈 1823 +寨 1824 +滴 1825 +鼻 1826 +掘 1827 +狗 1828 +驶 1829 +朴 1830 +拆 1831 +惜 1832 +玻 1833 +扣 1834 +萄 1835 +蔬 1836 +宠 1837 +2014 1838 +缴 1839 +赫 1840 +凯 1841 +滨 1842 +乔 1843 +腰 1844 +葬 1845 +孟 1846 +吾 1847 +枚 1848 +圳 1849 +忙 1850 +扫 1851 +杭 1852 +凌 1853 +1998 1854 +梯 1855 +丈 1856 +隶 1857 +1999 1858 +剪 1859 +盗 1860 +擅 1861 +疆 1862 +弯 1863 +携 1864 +拒 1865 +秒 1866 +颁 1867 +醇 1868 +割 1869 +浆 1870 +姑 1871 +爸 1872 +螺 1873 +穗 1874 +缝 1875 +慈 1876 +喝 1877 +瓶 1878 +漏 1879 +悠 1880 +猎 1881 +番 1882 +孕 1883 +伪 1884 +漂 1885 +腿 1886 +吐 1887 +坝 1888 +滤 1889 +函 1890 +匀 1891 +偷 1892 +浩 1893 +矛 1894 +僧 1895 +辨 1896 +俊 1897 +棉 1898 +铸 1899 +29 1900 +诞 1901 +丧 1902 +夹 1903 +to 1904 +姿 1905 +睛 1906 +淮 1907 +阀 1908 +姜 1909 +45 1910 +尸 1911 +猛 1912 +1997 1913 +芽 1914 +账 1915 +旱 1916 +醉 1917 +弄 1918 +坊 1919 +烤 1920 +萧 1921 +矣 1922 +雾 1923 +倡 1924 +榜 1925 +弗 1926 +氨 1927 +朵 1928 +锡 1929 +袋 1930 +拨 1931 +湘 1932 +岳 1933 +烦 1934 +肩 1935 +熙 1936 +炭 1937 +婆 1938 +棋 1939 +禅 1940 +穴 1941 +宙 1942 +汗 1943 +艳 1944 +儒 1945 +叙 1946 +晨 1947 +颈 1948 +峡 1949 +拖 1950 +烂 1951 +茂 1952 +戒 1953 +飘 1954 +氛 1955 +蒂 1956 +撞 1957 +瓣 1958 +箭 1959 +叛 1960 +1996 1961 +31 1962 +鞋 1963 +劲 1964 +祝 1965 +娜 1966 +饲 1967 +侍 1968 +诱 1969 +叹 1970 +卢 1971 +弥 1972 +32 1973 +鼎 1974 +厦 1975 +屈 1976 +慕 1977 +魅 1978 +m 1979 +厨 1980 +嫁 1981 +绵 1982 +逼 1983 +扮 1984 +叔 1985 +酶 1986 +燥 1987 +狼 1988 +滋 1989 +汁 1990 +辐 1991 +怨 1992 +翅 1993 +佩 1994 +坑 1995 +旬 1996 +沃 1997 +剩 1998 +蛇 1999 +颖 2000 +篮 2001 +锐 2002 +侠 2003 +匹 2004 +唤 2005 +熊 2006 +漠 2007 +迟 2008 +敦 2009 +雌 2010 +谨 2011 +婴 2012 +浸 2013 +磷 2014 +筒 2015 +2015 2016 +滩 2017 +埋 2018 +框 2019 +弘 2020 +吕 2021 +碰 2022 +纺 2023 +硫 2024 +堪 2025 +契 2026 +蜜 2027 +蓄 2028 +1995 2029 +阐 2030 +apos 2031 +傲 2032 +碱 2033 +晰 2034 +狭 2035 +撑 2036 +叉 2037 +卧 2038 +劫 2039 +闹 2040 +赐 2041 +邓 2042 +奴 2043 +溉 2044 +浦 2045 +蹈 2046 +辣 2047 +遣 2048 +耀 2049 +耶 2050 +翠 2051 +t 2052 +叠 2053 +迈 2054 +霍 2055 +碧 2056 +恰 2057 +脊 2058 +昭 2059 +摸 2060 +饱 2061 +赔 2062 +泄 2063 +哭 2064 +讼 2065 +逝 2066 +逻 2067 +廊 2068 +擦 2069 +渗 2070 +彰 2071 +you 2072 +卿 2073 +旺 2074 +宪 2075 +36 2076 +顷 2077 +妆 2078 +陪 2079 +葛 2080 +仔 2081 +淀 2082 +翰 2083 +悦 2084 +穆 2085 +煮 2086 +辩 2087 +弦 2088 +in 2089 +串 2090 +押 2091 +蚀 2092 +逢 2093 +贺 2094 +焊 2095 +煌 2096 +缔 2097 +惑 2098 +鹿 2099 +袁 2100 +糊 2101 +逸 2102 +舟 2103 +勃 2104 +侦 2105 +涯 2106 +蔡 2107 +辟 2108 +涌 2109 +枯 2110 +痕 2111 +疼 2112 +莉 2113 +柴 2114 +1993 2115 +眉 2116 +1992 2117 +罢 2118 +催 2119 +衔 2120 +秉 2121 +妃 2122 +鸿 2123 +傅 2124 +400 2125 +辰 2126 +聪 2127 +咸 2128 +1994 2129 +扇 2130 +盈 2131 +勘 2132 +佐 2133 +泊 2134 +抛 2135 +搬 2136 +牢 2137 +宴 2138 +牲 2139 +贾 2140 +摘 2141 +姻 2142 +慎 2143 +帕 2144 +忌 2145 +卒 2146 +夕 2147 +卜 2148 +惟 2149 +挺 2150 +崖 2151 +炒 2152 +爵 2153 +冻 2154 +椒 2155 +鳞 2156 +祸 2157 +潭 2158 +腊 2159 +蒋 2160 +缠 2161 +寂 2162 +眠 2163 +冯 2164 +芯 2165 +槽 2166 +吊 2167 +33 2168 +150 2169 +聊 2170 +梗 2171 +嫩 2172 +凶 2173 +铭 2174 +爽 2175 +筋 2176 +韦 2177 +脾 2178 +铝 2179 +肢 2180 +栋 2181 +勾 2182 +萌 2183 +渊 2184 +掩 2185 +狮 2186 +撒 2187 +漆 2188 +骗 2189 +禽 2190 +38 2191 +蕴 2192 +坪 2193 +洒 2194 +冶 2195 +兹 2196 +椭 2197 +喻 2198 +泵 2199 +哀 2200 +翔 2201 +1990 2202 +棒 2203 +芝 2204 +x 2205 +扑 2206 +3000 2207 +毅 2208 +衍 2209 +惨 2210 +疯 2211 +欺 2212 +贼 2213 +肖 2214 +轰 2215 +巢 2216 +臂 2217 +轩 2218 +扁 2219 +淘 2220 +犬 2221 +宰 2222 +祠 2223 +挡 2224 +厌 2225 +帐 2226 +蜂 2227 +狐 2228 +垃 2229 +昂 2230 +圾 2231 +秩 2232 +芬 2233 +瞬 2234 +枢 2235 +舌 2236 +唇 2237 +棕 2238 +1984 2239 +霞 2240 +霜 2241 +艇 2242 +侨 2243 +鹤 2244 +硅 2245 +靖 2246 +哦 2247 +削 2248 +泌 2249 +奠 2250 +d 2251 +吏 2252 +夷 2253 +咖 2254 +彭 2255 +窑 2256 +胁 2257 +肪 2258 +120 2259 +贞 2260 +劝 2261 +钙 2262 +柜 2263 +鸭 2264 +75 2265 +庞 2266 +兔 2267 +荆 2268 +丙 2269 +纱 2270 +34 2271 +戈 2272 +藤 2273 +矩 2274 +泳 2275 +惧 2276 +铃 2277 +渴 2278 +胀 2279 +袖 2280 +丸 2281 +狠 2282 +豫 2283 +茫 2284 +1985 2285 +浇 2286 +菩 2287 +氯 2288 +啡 2289 +1988 2290 +葱 2291 +37 2292 +梨 2293 +霉 2294 +脆 2295 +氢 2296 +巷 2297 +丑 2298 +娃 2299 +锻 2300 +愤 2301 +贪 2302 +蝶 2303 +1991 2304 +厉 2305 +闽 2306 +浑 2307 +斩 2308 +栖 2309 +l 2310 +茅 2311 +昏 2312 +龟 2313 +碗 2314 +棚 2315 +滞 2316 +慰 2317 +600 2318 +2016 2319 +斋 2320 +虹 2321 +屯 2322 +萝 2323 +饼 2324 +窄 2325 +潘 2326 +绣 2327 +丢 2328 +芦 2329 +鳍 2330 +42 2331 +裕 2332 +誓 2333 +腻 2334 +48 2335 +95 2336 +锈 2337 +吞 2338 +蜀 2339 +啦 2340 +扭 2341 +5000 2342 +巩 2343 +髓 2344 +1987 2345 +劣 2346 +拌 2347 +谊 2348 +涛 2349 +勋 2350 +郊 2351 +莎 2352 +痴 2353 +窝 2354 +驰 2355 +1986 2356 +跌 2357 +笼 2358 +挤 2359 +溢 2360 +1989 2361 +隙 2362 +55 2363 +鹰 2364 +诏 2365 +帽 2366 +65 2367 +芒 2368 +爬 2369 +凸 2370 +牺 2371 +熔 2372 +吻 2373 +竭 2374 +瘦 2375 +冥 2376 +800 2377 +搏 2378 +屡 2379 +昔 2380 +萼 2381 +愁 2382 +捉 2383 +翁 2384 +怖 2385 +汪 2386 +烯 2387 +疲 2388 +缸 2389 +溃 2390 +85 2391 +泼 2392 +剖 2393 +涨 2394 +橡 2395 +谜 2396 +悔 2397 +嫌 2398 +盒 2399 +苯 2400 +凹 2401 +绳 2402 +畏 2403 +罐 2404 +虾 2405 +柯 2406 +邑 2407 +馨 2408 +兆 2409 +帖 2410 +陌 2411 +禄 2412 +垫 2413 +壶 2414 +逊 2415 +骤 2416 +祀 2417 +晴 2418 +蓬 2419 +e 2420 +苞 2421 +煎 2422 +菊 2423 +堤 2424 +甫 2425 +拱 2426 +氮 2427 +罕 2428 +舶 2429 +伞 2430 +姚 2431 +弓 2432 +嵌 2433 +1983 2434 +1982 2435 +馈 2436 +琼 2437 +噪 2438 +雀 2439 +呵 2440 +汝 2441 +焉 2442 +陀 2443 +胺 2444 +惩 2445 +沼 2446 +枣 2447 +桐 2448 +酱 2449 +遮 2450 +孢 2451 +钝 2452 +呀 2453 +锥 2454 +妥 2455 +酿 2456 +巫 2457 +闯 2458 +沧 2459 +崩 2460 +蕊 2461 +酬 2462 +匠 2463 +躲 2464 +43 2465 +喊 2466 +98 2467 +琳 2468 +46 2469 +绎 2470 +喉 2471 +凰 2472 +抬 2473 +93 2474 +膨 2475 +盲 2476 +剥 2477 +喂 2478 +庸 2479 +奸 2480 +n 2481 +钩 2482 +冈 2483 +募 2484 +苑 2485 +杏 2486 +杉 2487 +辱 2488 +隋 2489 +薪 2490 +绒 2491 +1980 2492 +99 2493 +欠 2494 +尉 2495 +r 2496 +攀 2497 +抹 2498 +巾 2499 +1958 2500 +渣 2501 +苹 2502 +猴 2503 +悄 2504 +屠 2505 +41 2506 +颂 2507 +湛 2508 +魄 2509 +颠 2510 +1949 2511 +呆 2512 +粤 2513 +岂 2514 +娇 2515 +暑 2516 +44 2517 +56 2518 +52 2519 +鹅 2520 +筛 2521 +膏 2522 +樱 2523 +p 2524 +缆 2525 +襄 2526 +瑟 2527 +恭 2528 +泻 2529 +匪 2530 +兮 2531 +恼 2532 +吟 2533 +仕 2534 +蔽 2535 +骄 2536 +蚕 2537 +斥 2538 +椅 2539 +姬 2540 +谦 2541 +for 2542 +椎 2543 +搅 2544 +卸 2545 +沫 2546 +怜 2547 +坎 2548 +瑰 2549 +1978 2550 +钦 2551 +h 2552 +拾 2553 +厕 2554 +後 2555 +逾 2556 +薯 2557 +衬 2558 +钾 2559 +崔 2560 +稽 2561 +蛮 2562 +殷 2563 +晒 2564 +47 2565 +菇 2566 +臭 2567 +弧 2568 +擎 2569 +粹 2570 +纬 2571 +1500 2572 +焰 2573 +玲 2574 +竣 2575 +咒 2576 +歇 2577 +糕 2578 +诵 2579 +茨 2580 +妮 2581 +酯 2582 +麟 2583 +卑 2584 +浏 2585 +咽 2586 +罩 2587 +舱 2588 +酵 2589 +晕 2590 +顽 2591 +赁 2592 +咬 2593 +枫 2594 +冀 2595 +贮 2596 +艘 2597 +亏 2598 +薛 2599 +瀑 2600 +篆 2601 +膀 2602 +沸 2603 +雍 2604 +咳 2605 +尹 2606 +愉 2607 +烹 2608 +坠 2609 +勿 2610 +钠 2611 +64 2612 +坤 2613 +甸 2614 +墅 2615 +闸 2616 +藻 2617 +韧 2618 +鄂 2619 +58 2620 +51 2621 +91 2622 +j 2623 +瑶 2624 +舆 2625 +夸 2626 +54 2627 +蕾 2628 +栗 2629 +咏 2630 +丞 2631 +抄 2632 +鹏 2633 +弊 2634 +檐 2635 +骂 2636 +仆 2637 +峻 2638 +爪 2639 +赚 2640 +帆 2641 +娶 2642 +嘛 2643 +钓 2644 +澄 2645 +猜 2646 +1979 2647 +裔 2648 +抒 2649 +铅 2650 +卉 2651 +彦 2652 +f 2653 +删 2654 +衷 2655 +禹 2656 +寡 2657 +蒲 2658 +砌 2659 +on 2660 +棱 2661 +72 2662 +拘 2663 +堵 2664 +雁 2665 +仄 2666 +荫 2667 +53 2668 +k 2669 +1981 2670 +祈 2671 +49 2672 +奢 2673 +赌 2674 +寇 2675 +3d 2676 +隧 2677 +摊 2678 +雇 2679 +卦 2680 +婉 2681 +敲 2682 +挣 2683 +皱 2684 +虞 2685 +亨 2686 +懈 2687 +挽 2688 +珊 2689 +饶 2690 +滥 2691 +锯 2692 +闷 2693 +it 2694 +酮 2695 +虐 2696 +兑 2697 +僵 2698 +傻 2699 +62 2700 +沦 2701 +巅 2702 +鞭 2703 +梳 2704 +赣 2705 +锌 2706 +庐 2707 +薇 2708 +庵 2709 +57 2710 +96 2711 +慨 2712 +肚 2713 +妄 2714 +g 2715 +仗 2716 +绑 2717 +2017 2718 +枕 2719 +牡 2720 +000 2721 +胖 2722 +沪 2723 +垒 2724 +捞 2725 +捧 2726 +竖 2727 +蜡 2728 +桩 2729 +厢 2730 +孵 2731 +黏 2732 +拯 2733 +63 2734 +谭 2735 +68 2736 +诈 2737 +灿 2738 +釉 2739 +1956 2740 +裹 2741 +钮 2742 +俩 2743 +o 2744 +灶 2745 +彝 2746 +蟹 2747 +涩 2748 +醋 2749 +110 2750 +匙 2751 +歧 2752 +刹 2753 +玫 2754 +棘 2755 +橙 2756 +凑 2757 +桶 2758 +刃 2759 +伽 2760 +4000 2761 +硝 2762 +怡 2763 +籽 2764 +敞 2765 +淳 2766 +矮 2767 +镶 2768 +戚 2769 +幢 2770 +涡 2771 +66 2772 +尧 2773 +膝 2774 +is 2775 +哉 2776 +肆 2777 +畔 2778 +溯 2779 +97 2780 +媚 2781 +烘 2782 +01 2783 +67 2784 +窃 2785 +焚 2786 +澜 2787 +愚 2788 +棵 2789 +乞 2790 +86 2791 +78 2792 +佑 2793 +76 2794 +iphone 2795 +暨 2796 +敷 2797 +饥 2798 +俯 2799 +蔓 2800 +v 2801 +05 2802 +88 2803 +暮 2804 +砍 2805 +邵 2806 +仑 2807 +毗 2808 +剿 2809 +馀 2810 +180 2811 +锤 2812 +刮 2813 +1950 2814 +梭 2815 +摧 2816 +250 2817 +掠 2818 +躯 2819 +诡 2820 +匈 2821 +侣 2822 +胚 2823 +疮 2824 +59 2825 +裙 2826 +windows 2827 +裸 2828 +08 2829 +塌 2830 +吓 2831 +俘 2832 +糙 2833 +藩 2834 +楷 2835 +羞 2836 +with 2837 +鲍 2838 +帘 2839 +裤 2840 +宛 2841 +憾 2842 +桓 2843 +痰 2844 +寞 2845 +骚 2846 +惹 2847 +笋 2848 +萃 2849 +92 2850 +栓 2851 +61 2852 +挫 2853 +矢 2854 +垦 2855 +09 2856 +垄 2857 +绸 2858 +凄 2859 +your 2860 +镀 2861 +熏 2862 +钉 2863 +1945 2864 +led 2865 +粪 2866 +缅 2867 +洽 2868 +鞘 2869 +蔗 2870 +82 2871 +迄 2872 +沐 2873 +凿 2874 +勉 2875 +昨 2876 +喘 2877 +700 2878 +爹 2879 +屑 2880 +耻 2881 +沥 2882 +庶 2883 +涅 2884 +腕 2885 +袍 2886 +懒 2887 +阜 2888 +嗜 2889 +朔 2890 +1200 2891 +蒜 2892 +沛 2893 +坟 2894 +轿 2895 +喀 2896 +笛 2897 +狄 2898 +饿 2899 +蓉 2900 +泣 2901 +窟 2902 +130 2903 +豹 2904 +屿 2905 +73 2906 +崛 2907 +迦 2908 +诠 2909 +贬 2910 +腥 2911 +83 2912 +钥 2913 +嗣 2914 +瑜 2915 +07 2916 +倦 2917 +萎 2918 +拦 2919 +冤 2920 +讽 2921 +潇 2922 +谣 2923 +趁 2924 +1960 2925 +妨 2926 +84 2927 +贩 2928 +74 2929 +萍 2930 +窦 2931 +纂 2932 +缀 2933 +矫 2934 +淑 2935 +墩 2936 +梵 2937 +沾 2938 +淫 2939 +乖 2940 +汰 2941 +莞 2942 +81 2943 +旷 2944 +浊 2945 +挚 2946 +撼 2947 +69 2948 +87 2949 +氟 2950 +焕 2951 +06 2952 +庚 2953 +掀 2954 +诀 2955 +kg 2956 +盼 2957 +71 2958 +疹 2959 +窖 2960 +匆 2961 +厥 2962 +轧 2963 +89 2964 +淹 2965 +94 2966 +160 2967 +亥 2968 +鸦 2969 +棍 2970 +谅 2971 +歼 2972 +汕 2973 +挪 2974 +蚁 2975 +敛 2976 +魁 2977 +畴 2978 +炫 2979 +丫 2980 +奎 2981 +菱 2982 +沂 2983 +撕 2984 +阎 2985 +詹 2986 +03 2987 +蛛 2988 +77 2989 +靡 2990 +瞻 2991 +咱 2992 +愧 2993 +烷 2994 +畸 2995 +灸 2996 +眸 2997 +that 2998 +觅 2999 +芜 3000 +1955 3001 +廓 3002 +斌 3003 +躁 3004 +麓 3005 +摔 3006 +1970 3007 +烛 3008 +睹 3009 +孜 3010 +缚 3011 +堕 3012 +昼 3013 +睿 3014 +琪 3015 +琉 3016 +贱 3017 +6000 3018 +渝 3019 +跋 3020 +1959 3021 +茄 3022 +1957 3023 +舜 3024 +1976 3025 +诛 3026 +1952 3027 +捣 3028 +芙 3029 +04 3030 +1961 3031 +倚 3032 +1938 3033 +酰 3034 +澈 3035 +慌 3036 +帜 3037 +颤 3038 +陇 3039 +1962 3040 +02 3041 +颌 3042 +昧 3043 +佣 3044 +眷 3045 +徙 3046 +禾 3047 +逮 3048 +1948 3049 +79 3050 +莹 3051 +碟 3052 +梢 3053 +朽 3054 +粥 3055 +喇 3056 +1964 3057 +榆 3058 +驳 3059 +楔 3060 +1965 3061 +啸 3062 +肋 3063 +dna 3064 +踢 3065 +1975 3066 +1937 3067 +u 3068 +傍 3069 +桔 3070 +肴 3071 +呕 3072 +旭 3073 +埠 3074 +贿 3075 +曝 3076 +杖 3077 +俭 3078 +栩 3079 +1953 3080 +斧 3081 +镁 3082 +匾 3083 +踩 3084 +橘 3085 +颅 3086 +1963 3087 +囚 3088 +蛙 3089 +1946 3090 +膳 3091 +坞 3092 +琐 3093 +荧 3094 +瘟 3095 +涤 3096 +胰 3097 +衫 3098 +噬 3099 +皖 3100 +邱 3101 +埔 3102 +汀 3103 +羡 3104 +睐 3105 +葵 3106 +耿 3107 +糟 3108 +厄 3109 +秧 3110 +黔 3111 +蹄 3112 +140 3113 +漳 3114 +鞍 3115 +谏 3116 +腋 3117 +簇 3118 +梧 3119 +戎 3120 +1977 3121 +榴 3122 +诣 3123 +宦 3124 +苔 3125 +揽 3126 +簧 3127 +狸 3128 +阙 3129 +扯 3130 +耍 3131 +棠 3132 +脓 3133 +烫 3134 +翘 3135 +芭 3136 +躺 3137 +羁 3138 +藉 3139 +拐 3140 +1966 3141 +陡 3142 +1954 3143 +漓 3144 +棺 3145 +钧 3146 +琅 3147 +扔 3148 +寝 3149 +绚 3150 +熬 3151 +驿 3152 +邹 3153 +杠 3154 +1972 3155 +w 3156 +绥 3157 +窥 3158 +晃 3159 +渭 3160 +1947 3161 +樊 3162 +鑫 3163 +祁 3164 +陋 3165 +哺 3166 +堰 3167 +祛 3168 +y 3169 +梓 3170 +崎 3171 +1968 3172 +孽 3173 +蝴 3174 +蔚 3175 +抖 3176 +苟 3177 +肇 3178 +溜 3179 +绅 3180 +妾 3181 +1940 3182 +跪 3183 +沁 3184 +q 3185 +1973 3186 +莽 3187 +虏 3188 +be 3189 +瞄 3190 +砸 3191 +稚 3192 +僚 3193 +崭 3194 +迭 3195 +皂 3196 +彬 3197 +雏 3198 +ip 3199 +羲 3200 +缕 3201 +绞 3202 +俞 3203 +簿 3204 +耸 3205 +廖 3206 +嘲 3207 +can 3208 +1969 3209 +翌 3210 +榄 3211 +裴 3212 +槐 3213 +1939 3214 +洼 3215 +睁 3216 +1951 3217 +灼 3218 +啤 3219 +臀 3220 +啥 3221 +濒 3222 +醛 3223 +峨 3224 +葫 3225 +悍 3226 +笨 3227 +嘱 3228 +1935 3229 +稠 3230 +360 3231 +韶 3232 +1941 3233 +陛 3234 +峭 3235 +1974 3236 +酚 3237 +翩 3238 +舅 3239 +8000 3240 +寅 3241 +1936 3242 +蕉 3243 +阮 3244 +垣 3245 +戮 3246 +me 3247 +趾 3248 +犀 3249 +巍 3250 +re 3251 +霄 3252 +1942 3253 +1930 3254 +饪 3255 +sci 3256 +秆 3257 +朕 3258 +驼 3259 +肛 3260 +揉 3261 +ipad 3262 +楠 3263 +岚 3264 +疡 3265 +帧 3266 +柑 3267 +iso9001 3268 +赎 3269 +逍 3270 +滇 3271 +璋 3272 +礁 3273 +黛 3274 +钞 3275 +邢 3276 +涧 3277 +劈 3278 +瞳 3279 +砚 3280 +驴 3281 +1944 3282 +锣 3283 +恳 3284 +栅 3285 +吵 3286 +牟 3287 +沌 3288 +瞩 3289 +咪 3290 +毯 3291 +炳 3292 +淤 3293 +盯 3294 +芋 3295 +粟 3296 +350 3297 +栈 3298 +戊 3299 +盏 3300 +峪 3301 +拂 3302 +暇 3303 +酥 3304 +汛 3305 +900 3306 +pc 3307 +嚣 3308 +2500 3309 +轼 3310 +妒 3311 +匿 3312 +1934 3313 +鸽 3314 +蝉 3315 +cd 3316 +痒 3317 +宵 3318 +瘫 3319 +1927 3320 +1943 3321 +璧 3322 +汲 3323 +1971 3324 +冢 3325 +碌 3326 +琢 3327 +磅 3328 +卤 3329 +105 3330 +剔 3331 +谎 3332 +圩 3333 +酌 3334 +捏 3335 +渺 3336 +媳 3337 +1933 3338 +穹 3339 +谥 3340 +骏 3341 +哨 3342 +骆 3343 +乒 3344 +10000 3345 +摹 3346 +兜 3347 +柿 3348 +喧 3349 +呜 3350 +捡 3351 +橄 3352 +逗 3353 +瑚 3354 +呐 3355 +檀 3356 +辜 3357 +妊 3358 +祯 3359 +1931 3360 +苷 3361 +don 3362 +衙 3363 +笃 3364 +芸 3365 +霖 3366 +荔 3367 +闺 3368 +羌 3369 +芹 3370 +dvd 3371 +哼 3372 +糯 3373 +吼 3374 +蕃 3375 +嵩 3376 +矶 3377 +绽 3378 +坯 3379 +娠 3380 +1928 3381 +祷 3382 +锰 3383 +qq 3384 +by 3385 +瘀 3386 +108 3387 +岐 3388 +1932 3389 +茵 3390 +筝 3391 +斐 3392 +肽 3393 +歉 3394 +1929 3395 +嗽 3396 +恤 3397 +汶 3398 +聂 3399 +樟 3400 +擒 3401 +鹃 3402 +拙 3403 +鲤 3404 +絮 3405 +鄙 3406 +彪 3407 +ipod 3408 +z 3409 +嗓 3410 +墟 3411 +骼 3412 +渤 3413 +僻 3414 +豁 3415 +谕 3416 +荟 3417 +姨 3418 +婷 3419 +挠 3420 +哇 3421 +炙 3422 +220 3423 +诅 3424 +娥 3425 +哑 3426 +阱 3427 +嫉 3428 +圭 3429 +乓 3430 +橱 3431 +歪 3432 +禧 3433 +甩 3434 +坷 3435 +晏 3436 +驯 3437 +讳 3438 +泗 3439 +煞 3440 +my 3441 +淄 3442 +倪 3443 +妓 3444 +窍 3445 +竿 3446 +襟 3447 +匡 3448 +钛 3449 +侈 3450 +ll 3451 +侄 3452 +铲 3453 +哮 3454 +厩 3455 +1967 3456 +亢 3457 +101 3458 +辕 3459 +瘾 3460 +辊 3461 +狩 3462 +掷 3463 +潍 3464 +240 3465 +伺 3466 +嘿 3467 +弈 3468 +嘎 3469 +陨 3470 +娅 3471 +1800 3472 +昊 3473 +犁 3474 +屁 3475 +蜘 3476 +170 3477 +寥 3478 +滕 3479 +毙 3480 +as 3481 +涝 3482 +谛 3483 +all 3484 +郝 3485 +痹 3486 +溺 3487 +汾 3488 +脐 3489 +馅 3490 +蠢 3491 +珀 3492 +腌 3493 +扼 3494 +敕 3495 +莓 3496 +峦 3497 +铬 3498 +谍 3499 +炬 3500 +龚 3501 +麒 3502 +睦 3503 +磺 3504 +吁 3505 +掺 3506 +烁 3507 +靶 3508 +or 3509 +圃 3510 +饵 3511 +褶 3512 +娟 3513 +滔 3514 +挨 3515 +android 3516 +褒 3517 +胱 3518 +cpu 3519 +晖 3520 +脖 3521 +垢 3522 +抉 3523 +冉 3524 +茧 3525 +from 3526 +渲 3527 +癫 3528 +125 3529 +de 3530 +悼 3531 +嫂 3532 +瞒 3533 +纶 3534 +肘 3535 +炖 3536 +瀚 3537 +皋 3538 +姊 3539 +颐 3540 +1600 3541 +俏 3542 +颊 3543 +gps 3544 +讶 3545 +札 3546 +奕 3547 +磊 3548 +镖 3549 +遐 3550 +眺 3551 +腑 3552 +boss 3553 +琦 3554 +蚊 3555 +窜 3556 +渍 3557 +嗯 3558 +102 3559 +1926 3560 +touch 3561 +夯 3562 +1300 3563 +笙 3564 +蘑 3565 +翡 3566 +碘 3567 +卯 3568 +啼 3569 +靓 3570 +辍 3571 +莺 3572 +躬 3573 +猿 3574 +杞 3575 +眩 3576 +虔 3577 +凋 3578 +遁 3579 +泾 3580 +岔 3581 +羟 3582 +弛 3583 +娄 3584 +茸 3585 +皓 3586 +峙 3587 +逅 3588 +邂 3589 +苇 3590 +楹 3591 +蹲 3592 +拢 3593 +甄 3594 +鳃 3595 +104 3596 +邯 3597 +捆 3598 +勺 3599 +450 3600 +酉 3601 +荚 3602 +唑 3603 +臻 3604 +辗 3605 +绰 3606 +徊 3607 +榨 3608 +苛 3609 +赦 3610 +盔 3611 +壬 3612 +恍 3613 +缉 3614 +2020 3615 +熨 3616 +7000 3617 +澡 3618 +桨 3619 +匣 3620 +兢 3621 +106 3622 +驭 3623 +x1 3624 +镍 3625 +孰 3626 +绮 3627 +馏 3628 +蝇 3629 +佼 3630 +鲸 3631 +128 3632 +哎 3633 +裳 3634 +蜕 3635 +嚼 3636 +嘻 3637 +web 3638 +庇 3639 +绢 3640 +倩 3641 +钵 3642 +ii 3643 +恪 3644 +帷 3645 +莆 3646 +柠 3647 +藕 3648 +砾 3649 +115 3650 +绊 3651 +喙 3652 +坂 3653 +徘 3654 +荀 3655 +瞧 3656 +蛾 3657 +1925 3658 +晦 3659 +ph 3660 +mm 3661 +铎 3662 +107 3663 +紊 3664 +锚 3665 +酪 3666 +稷 3667 +聋 3668 +闵 3669 +熹 3670 +冕 3671 +诫 3672 +珑 3673 +曦 3674 +篷 3675 +320 3676 +迥 3677 +蘖 3678 +胤 3679 +103 3680 +檬 3681 +瑾 3682 +钳 3683 +遏 3684 +辄 3685 +嬉 3686 +隅 3687 +ps 3688 +秃 3689 +112 3690 +帛 3691 +聆 3692 +芥 3693 +诬 3694 +1100 3695 +挟 3696 +宕 3697 +2018 3698 +鹊 3699 +琶 3700 +膛 3701 +mv 3702 +兀 3703 +gb 3704 +懿 3705 +碾 3706 +叮 3707 +863 3708 +蠕 3709 +譬 3710 +缮 3711 +烽 3712 +妍 3713 +榕 3714 +260 3715 +1920 3716 +邃 3717 +焙 3718 +倘 3719 +210 3720 +戌 3721 +茹 3722 +豚 3723 +晾 3724 +浒 3725 +玺 3726 +醚 3727 +祐 3728 +炽 3729 +this 3730 +缪 3731 +凛 3732 +噩 3733 +溅 3734 +毋 3735 +槛 3736 +ei 3737 +are 3738 +嫡 3739 +蝠 3740 +娴 3741 +稣 3742 +禀 3743 +壑 3744 +殆 3745 +敖 3746 +cm 3747 +ios 3748 +倭 3749 +挛 3750 +侃 3751 +蚌 3752 +咀 3753 +盎 3754 +殉 3755 +岑 3756 +浚 3757 +谬 3758 +狡 3759 +1924 3760 +癸 3761 +280 3762 +逛 3763 +耽 3764 +俺 3765 +璨 3766 +巳 3767 +茜 3768 +郸 3769 +蒴 3770 +琵 3771 +we 3772 +230 3773 +叩 3774 +泸 3775 +塾 3776 +one 3777 +稼 3778 +reg 3779 +侮 3780 +锂 3781 +曙 3782 +3500 3783 +up 3784 +薰 3785 +婿 3786 +惶 3787 +拭 3788 +篱 3789 +恬 3790 +淌 3791 +烙 3792 +袜 3793 +徵 3794 +慷 3795 +夭 3796 +噶 3797 +莘 3798 +135 3799 +鸳 3800 +殡 3801 +蚂 3802 +1900 3803 +憎 3804 +喃 3805 +佚 3806 +龛 3807 +潢 3808 +烃 3809 +at 3810 +岱 3811 +潺 3812 +109 3813 +衢 3814 +璀 3815 +5cm 3816 +1400 3817 +鹭 3818 +揣 3819 +痢 3820 +know 3821 +厮 3822 +氓 3823 +怠 3824 +no 3825 +nbsp 3826 +痘 3827 +硒 3828 +镌 3829 +乍 3830 +咯 3831 +惬 3832 +not 3833 +桦 3834 +骇 3835 +枉 3836 +蜗 3837 +睾 3838 +淇 3839 +耘 3840 +娓 3841 +弼 3842 +鳌 3843 +嗅 3844 +gdp 3845 +狙 3846 +箫 3847 +朦 3848 +椰 3849 +胥 3850 +丐 3851 +陂 3852 +唾 3853 +鳄 3854 +柚 3855 +谒 3856 +journal 3857 +戍 3858 +1912 3859 +刁 3860 +鸾 3861 +缭 3862 +骸 3863 +铣 3864 +酋 3865 +蝎 3866 +掏 3867 +耦 3868 +怯 3869 +娲 3870 +拇 3871 +汹 3872 +胧 3873 +疤 3874 +118 3875 +硼 3876 +恕 3877 +哗 3878 +眶 3879 +痫 3880 +凳 3881 +鲨 3882 +擢 3883 +歹 3884 +樵 3885 +瘠 3886 +app 3887 +茗 3888 +翟 3889 +黯 3890 +蜒 3891 +壹 3892 +殇 3893 +伶 3894 +辙 3895 +an 3896 +瑕 3897 +町 3898 +孚 3899 +痉 3900 +铵 3901 +搁 3902 +漾 3903 +戟 3904 +镰 3905 +鸯 3906 +猩 3907 +190 3908 +蔷 3909 +缤 3910 +叭 3911 +垩 3912 +113 3913 +曳 3914 +usb 3915 +奚 3916 +毓 3917 +ibm 3918 +颓 3919 +汐 3920 +靴 3921 +china 3922 +傣 3923 +尬 3924 +濮 3925 +赂 3926 +媛 3927 +懦 3928 +扦 3929 +111 3930 +韬 3931 +like 3932 +戳 3933 +java 3934 +雯 3935 +114 3936 +蜿 3937 +116 3938 +1923 3939 +笺 3940 +裘 3941 +尴 3942 +侗 3943 +mba 3944 +3g 3945 +钨 3946 +1919 3947 +苓 3948 +1922 3949 +寰 3950 +蛊 3951 +扳 3952 +搓 3953 +涟 3954 +睫 3955 +淬 3956 +5mm 3957 +123 3958 +ve 3959 +121 3960 +赈 3961 +恺 3962 +瞎 3963 +蝙 3964 +1921 3965 +枸 3966 +萱 3967 +颚 3968 +憩 3969 +秽 3970 +秸 3971 +拷 3972 +阑 3973 +貂 3974 +粱 3975 +煲 3976 +隘 3977 +暧 3978 +惕 3979 +沽 3980 +time 3981 +菠 3982 +1911 3983 +趟 3984 +磋 3985 +偕 3986 +涕 3987 +邸 3988 +so 3989 +踞 3990 +惫 3991 +122 3992 +阪 3993 +鞠 3994 +饺 3995 +汞 3996 +颍 3997 +氰 3998 +屹 3999 +蛟 4000 +跻 4001 +哟 4002 +have 4003 +126 4004 +臼 4005 +熄 4006 +绛 4007 +弩 4008 +褪 4009 +117 4010 +渎 4011 +亟 4012 +匮 4013 +撇 4014 +internet 4015 +霆 4016 +攒 4017 +舵 4018 +扛 4019 +彤 4020 +nba 4021 +蛤 4022 +婢 4023 +偃 4024 +胫 4025 +姥 4026 +睑 4027 +love 4028 +iso 4029 +pk 4030 +诙 4031 +what 4032 +诲 4033 +锭 4034 +悚 4035 +扒 4036 +洱 4037 +劾 4038 +惰 4039 +篡 4040 +瓯 4041 +徇 4042 +铀 4043 +骋 4044 +flash 4045 +1918 4046 +out 4047 +筷 4048 +渚 4049 +踵 4050 +俨 4051 +ceo 4052 +榻 4053 +糜 4054 +捻 4055 +釜 4056 +哩 4057 +萤 4058 +270 4059 +蛹 4060 +隽 4061 +垮 4062 +鸠 4063 +鸥 4064 +漕 4065 +瑙 4066 +礴 4067 +憧 4068 +殴 4069 +潼 4070 +悯 4071 +砺 4072 +拽 4073 +钗 4074 +ct 4075 +酣 4076 +镂 4077 +mp3 4078 +膺 4079 +楞 4080 +竺 4081 +迂 4082 +嫣 4083 +忱 4084 +cad 4085 +哄 4086 +疣 4087 +鹦 4088 +1700 4089 +枭 4090 +憬 4091 +疱 4092 +will 4093 +婪 4094 +沮 4095 +1914 4096 +怅 4097 +119 4098 +筱 4099 +扉 4100 +瞰 4101 +linux 4102 +旌 4103 +蔑 4104 +铠 4105 +瀛 4106 +vip 4107 +琥 4108 +750 4109 +127 4110 +懵 4111 +谴 4112 +捍 4113 +蟾 4114 +漩 4115 +1913 4116 +拣 4117 +汴 4118 +university 4119 +刨 4120 +叱 4121 +曜 4122 +妞 4123 +澎 4124 +镑 4125 +翎 4126 +瞪 4127 +sh 4128 +倔 4129 +芍 4130 +璞 4131 +瓮 4132 +驹 4133 +芷 4134 +寐 4135 +擂 4136 +丕 4137 +蟠 4138 +诃 4139 +悸 4140 +亘 4141 +溴 4142 +宸 4143 +廿 4144 +恃 4145 +棣 4146 +1917 4147 +荼 4148 +筠 4149 +羚 4150 +慑 4151 +唉 4152 +纣 4153 +麼 4154 +蹦 4155 +锄 4156 +145 4157 +international 4158 +124 4159 +淆 4160 +甙 4161 +132 4162 +蚜 4163 +椿 4164 +禺 4165 +绯 4166 +冗 4167 +168 4168 +葩 4169 +厝 4170 +媲 4171 +蒿 4172 +痪 4173 +650 4174 +菁 4175 +炊 4176 +wifi 4177 +俑 4178 +new 4179 +讥 4180 +min 4181 +桀 4182 +祺 4183 +129 4184 +吡 4185 +迩 4186 +do 4187 +john 4188 +箔 4189 +皿 4190 +缎 4191 +萦 4192 +剃 4193 +霓 4194 +酝 4195 +mg 4196 +诰 4197 +茉 4198 +just 4199 +get 4200 +飙 4201 +湍 4202 +蜥 4203 +箕 4204 +蘸 4205 +550 4206 +4500 4207 +柬 4208 +韭 4209 +溥 4210 +but 4211 +熠 4212 +鹉 4213 +咐 4214 +剌 4215 +138 4216 +悖 4217 +瞿 4218 +槟 4219 +娩 4220 +闾 4221 +pvc 4222 +遴 4223 +咫 4224 +20000 4225 +孺 4226 +彷 4227 +茬 4228 +211 4229 +蓟 4230 +li 4231 +if 4232 +憨 4233 +袅 4234 +佬 4235 +炯 4236 +erp 4237 +1910 4238 +啶 4239 +昙 4240 +蚩 4241 +136 4242 +痔 4243 +蕨 4244 +瓢 4245 +夔 4246 +毡 4247 +赃 4248 +鳖 4249 +沅 4250 +wang 4251 +go 4252 +饷 4253 +165 4254 +臧 4255 +掖 4256 +褚 4257 +羹 4258 +ic 4259 +勐 4260 +tv 4261 +谚 4262 +畦 4263 +眨 4264 +贻 4265 +攸 4266 +涎 4267 +弑 4268 +咎 4269 +铂 4270 +瑛 4271 +1905 4272 +矗 4273 +虱 4274 +more 4275 +133 4276 +秤 4277 +谟 4278 +漱 4279 +俸 4280 +夙 4281 +1915 4282 +br 4283 +game 4284 +雉 4285 +螨 4286 +恣 4287 +斛 4288 +175 4289 +谙 4290 +隍 4291 +131 4292 +奄 4293 +480 4294 +yy 4295 +1916 4296 +壕 4297 +髻 4298 +155 4299 +鄱 4300 +嘶 4301 +磕 4302 +濡 4303 +赘 4304 +荞 4305 +讹 4306 +猕 4307 +痞 4308 +鬓 4309 +铮 4310 +腱 4311 +幡 4312 +榭 4313 +爻 4314 +5m 4315 +涓 4316 +晤 4317 +咕 4318 +惭 4319 +钼 4320 +匕 4321 +ok 4322 +撮 4323 +庾 4324 +笠 4325 +窘 4326 +癖 4327 +365 4328 +垛 4329 +窒 4330 +畲 4331 +甬 4332 +彗 4333 +缨 4334 +湮 4335 +寮 4336 +et 4337 +衅 4338 +谪 4339 +156 4340 +绫 4341 +9000 4342 +152 4343 +兖 4344 +疽 4345 +磐 4346 +380 4347 +菏 4348 +沱 4349 +骁 4350 +嫔 4351 +盂 4352 +娆 4353 +钊 4354 +蟒 4355 +忏 4356 +谤 4357 +148 4358 +137 4359 +server 4360 +2200 4361 +晟 4362 +ng 4363 +15000 4364 +google 4365 +痈 4366 +耆 4367 +谧 4368 +簪 4369 +134 4370 +ml 4371 +疟 4372 +扈 4373 +脍 4374 +琛 4375 +咋 4376 +胄 4377 +142 4378 +144 4379 +葆 4380 +轶 4381 +桢 4382 +973 4383 +攘 4384 +was 4385 +邕 4386 +拧 4387 +茯 4388 +205 4389 +摒 4390 +1908 4391 +intel 4392 +傀 4393 +祚 4394 +嘟 4395 +帼 4396 +1906 4397 +wto 4398 +筵 4399 +when 4400 +馒 4401 +疚 4402 +璇 4403 +砧 4404 +merge 4405 +槃 4406 +microsoft 4407 +犷 4408 +exe 4409 +腓 4410 +煜 4411 +弋 4412 +疸 4413 +濑 4414 +310 4415 +201 4416 +麝 4417 +嗟 4418 +忻 4419 +愣 4420 +facebook 4421 +斓 4422 +吝 4423 +咧 4424 +矾 4425 +愫 4426 +151 4427 +158 4428 +漪 4429 +珂 4430 +rna 4431 +逞 4432 +146 4433 +206 4434 +糠 4435 +璐 4436 +藓 4437 +昕 4438 +妩 4439 +屌 4440 +疵 4441 +excel 4442 +嘘 4443 +he 4444 +plc 4445 +袂 4446 +2400 4447 +139 4448 +稃 4449 +剁 4450 +侏 4451 +掐 4452 +猾 4453 +匍 4454 +2800 4455 +坳 4456 +黜 4457 +邺 4458 +闫 4459 +猥 4460 +湃 4461 +斟 4462 +癣 4463 +1904 4464 +185 4465 +匐 4466 +粳 4467 +sql 4468 +330 4469 +141 4470 +cp 4471 +1909 4472 +叟 4473 +俾 4474 +儡 4475 +莒 4476 +12000 4477 +骥 4478 +跤 4479 +耙 4480 +矜 4481 +翱 4482 +zhang 4483 +ms 4484 +赡 4485 +1907 4486 +浣 4487 +栾 4488 +拈 4489 +science 4490 +420 4491 +螟 4492 +aaa 4493 +桧 4494 +坍 4495 +睢 4496 +趴 4497 +id 4498 +伎 4499 +2100 4500 +婺 4501 +霹 4502 +痊 4503 +膊 4504 +眯 4505 +豌 4506 +202 4507 +驮 4508 +骈 4509 +850 4510 +iii 4511 +嶂 4512 +淞 4513 +143 4514 +腮 4515 +髅 4516 +炀 4517 +啄 4518 +亳 4519 +麾 4520 +147 4521 +筐 4522 +叨 4523 +徨 4524 +跷 4525 +ac 4526 +楂 4527 +郴 4528 +绶 4529 +hp 4530 +羔 4531 +xp 4532 +ieee 4533 +咤 4534 +now 4535 +there 4536 +靳 4537 +they 4538 +屎 4539 +雳 4540 +瘘 4541 +蹬 4542 +2300 4543 +惮 4544 +acid 4545 +涪 4546 +阖 4547 +煽 4548 +蹊 4549 +225 4550 +栉 4551 +153 4552 +俟 4553 +涸 4554 +辫 4555 +锢 4556 +佟 4557 +176 4558 +皎 4559 +cctv 4560 +啮 4561 +钰 4562 +螂 4563 +dc 4564 +啪 4565 +绷 4566 +204 4567 +闰 4568 +畿 4569 +2d 4570 +覃 4571 +2600 4572 +惘 4573 +贰 4574 +154 4575 +碉 4576 +卞 4577 +酐 4578 +枷 4579 +葺 4580 +芪 4581 +207 4582 +蕙 4583 +192 4584 +咚 4585 +籁 4586 +pro 4587 +钴 4588 +162 4589 +冽 4590 +玮 4591 +骷 4592 +啃 4593 +焖 4594 +猝 4595 +榈 4596 +滁 4597 +拮 4598 +跗 4599 +讷 4600 +蝗 4601 +208 4602 +蠡 4603 +world 4604 +烨 4605 +been 4606 +hd 4607 +gmp 4608 +256 4609 +脯 4610 +歙 4611 +泠 4612 +刍 4613 +掳 4614 +pe 4615 +his 4616 +僳 4617 +340 4618 +1902 4619 +螯 4620 +胳 4621 +髦 4622 +粽 4623 +戾 4624 +祜 4625 +178 4626 +186 4627 +岷 4628 +懋 4629 +馥 4630 +昵 4631 +踊 4632 +湄 4633 +郢 4634 +斡 4635 +迢 4636 +ce 4637 +photoshop 4638 +嗪 4639 +about 4640 +裨 4641 +1903 4642 +羧 4643 +膈 4644 +翊 4645 +lcd 4646 +鲫 4647 +163 4648 +螃 4649 +沓 4650 +疝 4651 +笈 4652 +ktv 4653 +榔 4654 +157 4655 +诘 4656 +autocad 4657 +195 4658 +颉 4659 +蛀 4660 +鸢 4661 +焯 4662 +囧 4663 +make 4664 +梆 4665 +npc 4666 +潞 4667 +戛 4668 +see 4669 +system 4670 +149 4671 +佗 4672 +艮 4673 +chinese 4674 +let 4675 +霾 4676 +鬟 4677 +215 4678 +net 4679 +玖 4680 +1898 4681 +腭 4682 +喔 4683 +172 4684 +罔 4685 +佥 4686 +粑 4687 +visual 4688 +舷 4689 +泯 4690 +m2 4691 +198 4692 +has 4693 +203 4694 +sd 4695 +泓 4696 +炜 4697 +谗 4698 +烬 4699 +跆 4700 +rpg 4701 +傩 4702 +飓 4703 +浔 4704 +钤 4705 +惚 4706 +胭 4707 +踝 4708 +镯 4709 +ep 4710 +221 4711 +臆 4712 +196 4713 +蜚 4714 +揪 4715 +觞 4716 +皈 4717 +dj 4718 +183 4719 +api 4720 +迸 4721 +匝 4722 +筏 4723 +167 4724 +醴 4725 +黍 4726 +洮 4727 +滦 4728 +侬 4729 +甾 4730 +290 4731 +way 4732 +3200 4733 +188 4734 +diy 4735 +2cm 4736 +com 4737 +澧 4738 +阈 4739 +袱 4740 +迤 4741 +衮 4742 +166 4743 +濂 4744 +娑 4745 +砥 4746 +砷 4747 +铨 4748 +缜 4749 +箴 4750 +30000 4751 +逵 4752 +猖 4753 +159 4754 +蛰 4755 +箍 4756 +侥 4757 +2mm 4758 +搂 4759 +纨 4760 +裱 4761 +枋 4762 +嫦 4763 +敝 4764 +挝 4765 +贲 4766 +潦 4767 +235 4768 +撩 4769 +惺 4770 +铰 4771 +f1 4772 +忒 4773 +咆 4774 +哆 4775 +莅 4776 +164 4777 +炕 4778 +抨 4779 +涿 4780 +龈 4781 +猷 4782 +got 4783 +b1 4784 +182 4785 +2m 4786 +212 4787 +遒 4788 +缥 4789 +vs 4790 +捂 4791 +俐 4792 +la 4793 +瘙 4794 +搐 4795 +牍 4796 +isbn 4797 +馍 4798 +our 4799 +痿 4800 +袤 4801 +峥 4802 +184 4803 +栎 4804 +罹 4805 +燎 4806 +喵 4807 +209 4808 +1901 4809 +璜 4810 +飒 4811 +蔼 4812 +珞 4813 +澹 4814 +奘 4815 +岖 4816 +芡 4817 +簸 4818 +杵 4819 +甥 4820 +骊 4821 +216 4822 +悴 4823 +173 4824 +惆 4825 +5mg 4826 +殃 4827 +1895 4828 +呃 4829 +161 4830 +5g 4831 +祗 4832 +3600 4833 +髋 4834 +169 4835 +liu 4836 +who 4837 +幔 4838 +down 4839 +榛 4840 +犊 4841 +霁 4842 +芮 4843 +520 4844 +牒 4845 +佰 4846 +her 4847 +狈 4848 +薨 4849 +co 4850 +吩 4851 +鳝 4852 +嵘 4853 +濠 4854 +呤 4855 +纫 4856 +3mm 4857 +檄 4858 +214 4859 +浜 4860 +370 4861 +189 4862 +缙 4863 +缢 4864 +煦 4865 +蓦 4866 +揖 4867 +拴 4868 +缈 4869 +218 4870 +褥 4871 +铿 4872 +312 4873 +燮 4874 +life 4875 +锵 4876 +174 4877 +荥 4878 +187 4879 +忿 4880 +4s 4881 +僖 4882 +婶 4883 +171 4884 +chen 4885 +芾 4886 +镐 4887 +痣 4888 +research 4889 +眈 4890 +460 4891 +祇 4892 +邈 4893 +翳 4894 +碣 4895 +遨 4896 +鳗 4897 +诂 4898 +never 4899 +岫 4900 +焘 4901 +3cm 4902 +co2 4903 +茱 4904 +tcp 4905 +only 4906 +255 4907 +gsm 4908 +say 4909 +洵 4910 +晁 4911 +right 4912 +噢 4913 +she 4914 +over 4915 +偈 4916 +旖 4917 +david 4918 +181 4919 +232 4920 +蚓 4921 +柘 4922 +珐 4923 +遽 4924 +岌 4925 +桅 4926 +213 4927 +唔 4928 +222 4929 +鄞 4930 +雹 4931 +michael 4932 +驸 4933 +苻 4934 +恻 4935 +鬃 4936 +玑 4937 +磬 4938 +崂 4939 +304 4940 +祉 4941 +荤 4942 +淼 4943 +560 4944 +264 4945 +肱 4946 +呗 4947 +pp 4948 +b2 4949 +骡 4950 +囱 4951 +10cm 4952 +佞 4953 +back 4954 +1890 4955 +226 4956 +耒 4957 +伫 4958 +嚷 4959 +粼 4960 +aa 4961 +歆 4962 +佃 4963 +旎 4964 +惋 4965 +殁 4966 +杳 4967 +their 4968 +阡 4969 +red 4970 +畈 4971 +蔺 4972 +os 4973 +177 4974 +map 4975 +巽 4976 +cbd 4977 +昱 4978 +啰 4979 +吠 4980 +179 4981 +199 4982 +嗔 4983 +涮 4984 +238 4985 +奂 4986 +1896 4987 +撷 4988 +301 4989 +袒 4990 +720 4991 +爰 4992 +捶 4993 +赭 4994 +蜓 4995 +姗 4996 +蔻 4997 +垠 4998 +193 4999 +gis 5000 +噻 5001 +ab 5002 +峒 5003 +皙 5004 +want 5005 +245 5006 +憔 5007 +帚 5008 +office 5009 +xx 5010 +杷 5011 +蟆 5012 +iso14001 5013 +觐 5014 +钒 5015 +岙 5016 +2700 5017 +1899 5018 +栀 5019 +幄 5020 +啧 5021 +癜 5022 +擀 5023 +轲 5024 +铆 5025 +them 5026 +讴 5027 +樽 5028 +霏 5029 +mtv 5030 +肮 5031 +枳 5032 +骞 5033 +诧 5034 +瘢 5035 +虬 5036 +拗 5037 +play 5038 +219 5039 +蕲 5040 +316 5041 +茁 5042 +唆 5043 +technology 5044 +word 5045 +沭 5046 +毂 5047 +蛎 5048 +芊 5049 +銮 5050 +瞥 5051 +呱 5052 +223 5053 +羿 5054 +吒 5055 +傥 5056 +髯 5057 +濯 5058 +蜻 5059 +皴 5060 +802 5061 +430 5062 +邳 5063 +燧 5064 +1860 5065 +獭 5066 +垭 5067 +祟 5068 +217 5069 +虢 5070 +how 5071 +枇 5072 +abs 5073 +鹫 5074 +194 5075 +颞 5076 +1894 5077 +333 5078 +皑 5079 +脲 5080 +197 5081 +舔 5082 +魇 5083 +霭 5084 +org 5085 +坨 5086 +郧 5087 +baby 5088 +椽 5089 +舫 5090 +228 5091 +oh 5092 +305 5093 +荠 5094 +琊 5095 +溟 5096 +1897 5097 +煨 5098 +265 5099 +谯 5100 +粲 5101 +罂 5102 +gonna 5103 +屉 5104 +佯 5105 +郦 5106 +亵 5107 +诽 5108 +芩 5109 +嵇 5110 +蚤 5111 +哒 5112 +315 5113 +啬 5114 +ain 5115 +嚎 5116 +玥 5117 +twitter 5118 +191 5119 +隼 5120 +唢 5121 +铛 5122 +cause 5123 +壅 5124 +藜 5125 +won 5126 +吱 5127 +rom 5128 +楣 5129 +璟 5130 +锆 5131 +憋 5132 +罡 5133 +al 5134 +咙 5135 +1850 5136 +腈 5137 +oslash 5138 +job 5139 +233 5140 +廪 5141 +堑 5142 +into 5143 +诩 5144 +b2c 5145 +溧 5146 +鹑 5147 +讫 5148 +哌 5149 +铢 5150 +蜴 5151 +1ml 5152 +稹 5153 +噜 5154 +镉 5155 +224 5156 +愕 5157 +桁 5158 +晔 5159 +琰 5160 +陲 5161 +疙 5162 +667 5163 +崮 5164 +need 5165 +540 5166 +8mm 5167 +html 5168 +颛 5169 +through 5170 +asp 5171 +桡 5172 +钜 5173 +580 5174 +take 5175 +谑 5176 +仞 5177 +咦 5178 +珪 5179 +揍 5180 +鱿 5181 +阉 5182 +3800 5183 +瘩 5184 +410 5185 +槌 5186 +滓 5187 +茴 5188 +tft 5189 +泮 5190 +涣 5191 +atm 5192 +pci 5193 +柞 5194 +渥 5195 +飨 5196 +孪 5197 +沔 5198 +谲 5199 +桉 5200 +vcd 5201 +慵 5202 +318 5203 +oem 5204 +other 5205 +俚 5206 +paul 5207 +跖 5208 +纭 5209 +恙 5210 +which 5211 +fi 5212 +佘 5213 +236 5214 +荃 5215 +咄 5216 +鞅 5217 +叁 5218 +james 5219 +恽 5220 +m3 5221 +253 5222 +炔 5223 +萘 5224 +钺 5225 +6500 5226 +1880 5227 +ccd 5228 +楫 5229 +塬 5230 +钡 5231 +琮 5232 +苄 5233 +950 5234 +325 5235 +275 5236 +1g 5237 +day 5238 +o2o 5239 +960 5240 +music 5241 +骰 5242 +偎 5243 +粕 5244 +amd 5245 +咔 5246 +鹄 5247 +瓒 5248 +阆 5249 +捅 5250 +嬴 5251 +adobe 5252 +箨 5253 +name 5254 +390 5255 +680 5256 +640 5257 +氦 5258 +倜 5259 +b2b 5260 +觊 5261 +xml 5262 +婕 5263 +229 5264 +jar 5265 +锑 5266 +撬 5267 +chem 5268 +掰 5269 +嗷 5270 +5500 5271 +1cm 5272 +饯 5273 +蓓 5274 +234 5275 +good 5276 +鼬 5277 +spa 5278 +佤 5279 +5a 5280 +ss 5281 +蚯 5282 +挞 5283 +臾 5284 +where 5285 +atp 5286 +227 5287 +嶙 5288 +幂 5289 +饬 5290 +闱 5291 +live 5292 +high 5293 +煅 5294 +嘧 5295 +1mm 5296 +蹭 5297 +sun 5298 +abc 5299 +瞭 5300 +顼 5301 +箐 5302 +here 5303 +徉 5304 +231 5305 +骜 5306 +302 5307 +嗨 5308 +邛 5309 +庑 5310 +柩 5311 +饕 5312 +俎 5313 +4mm 5314 +15g 5315 +嘌 5316 +50000 5317 +颏 5318 +cssci 5319 +椁 5320 +崧 5321 +锉 5322 +籼 5323 +1870 5324 +狞 5325 +弁 5326 +6mm 5327 +羯 5328 +踹 5329 +糅 5330 +248 5331 +1840 5332 +砼 5333 +263 5334 +嫖 5335 +tmp 5336 +252 5337 +mac 5338 +285 5339 +豉 5340 +啉 5341 +榷 5342 +嘈 5343 +en 5344 +俪 5345 +痂 5346 +308 5347 +inf 5348 +630 5349 +儋 5350 +4a 5351 +芎 5352 +ai 5353 +man 5354 +繇 5355 +1889 5356 +bt 5357 +239 5358 +meta 5359 +蹇 5360 +242 5361 +530 5362 +诋 5363 +bbc 5364 +煸 5365 +峋 5366 +淙 5367 +324 5368 +management 5369 +1885 5370 +泱 5371 +徜 5372 +crm 5373 +4cm 5374 +free 5375 +汩 5376 +纥 5377 +246 5378 +蝼 5379 +囿 5380 +uv 5381 +暹 5382 +谆 5383 +蹂 5384 +鞣 5385 +3c 5386 +mr 5387 +螳 5388 +cs 5389 +馗 5390 +幺 5391 +鞑 5392 +贽 5393 +268 5394 +istp 5395 +243 5396 +漯 5397 +237 5398 +牦 5399 +淖 5400 +engineering 5401 +dr 5402 +囤 5403 +than 5404 +gprs 5405 +sp 5406 +440 5407 +晗 5408 +1888 5409 +258 5410 +忡 5411 +懊 5412 +呋 5413 +埂 5414 +pcb 5415 +307 5416 +first 5417 +321 5418 +robert 5419 +鲈 5420 +sup2 5421 +阕 5422 +3m 5423 +幌 5424 +cg 5425 +303 5426 +鳅 5427 +勰 5428 +find 5429 +8cm 5430 +萸 5431 +剽 5432 +蚝 5433 +wi 5434 +绔 5435 +pdf 5436 +1250 5437 +262 5438 +php 5439 +辇 5440 +10mg 5441 +use 5442 +ie 5443 +麋 5444 +1884 5445 +陟 5446 +宥 5447 +oracle 5448 +锺 5449 +喽 5450 +620 5451 +1892 5452 +1893 5453 +淅 5454 +熵 5455 +荨 5456 +247 5457 +忤 5458 +american 5459 +266 5460 +seo 5461 +轭 5462 +嗦 5463 +荪 5464 +also 5465 +骠 5466 +鹘 5467 +p2p 5468 +4g 5469 +聿 5470 +绾 5471 +诶 5472 +985 5473 +怆 5474 +244 5475 +喋 5476 +恸 5477 +湟 5478 +睨 5479 +翦 5480 +fe 5481 +蜈 5482 +1875 5483 +褂 5484 +娼 5485 +1886 5486 +羸 5487 +觎 5488 +470 5489 +瘁 5490 +306 5491 +蚣 5492 +呻 5493 +241 5494 +1882 5495 +昶 5496 +谶 5497 +猬 5498 +荻 5499 +school 5500 +286 5501 +酗 5502 +unit 5503 +肄 5504 +躏 5505 +膑 5506 +288 5507 +2g 5508 +嗡 5509 +273 5510 +iv 5511 +cam 5512 +510 5513 +庠 5514 +崽 5515 +254 5516 +搪 5517 +pcr 5518 +胯 5519 +309 5520 +铉 5521 +峤 5522 +郯 5523 +藐 5524 +舂 5525 +come 5526 +蓼 5527 +some 5528 +薏 5529 +窿 5530 +羣 5531 +氽 5532 +徕 5533 +冼 5534 +rs 5535 +阂 5536 +欤 5537 +殒 5538 +窈 5539 +脘 5540 +780 5541 +篝 5542 +yang 5543 +1861 5544 +3300 5545 +iso9000 5546 +麸 5547 +砭 5548 +max 5549 +砰 5550 +骶 5551 +豺 5552 +lg 5553 +窠 5554 +獒 5555 +think 5556 +腴 5557 +苕 5558 +any 5559 +its 5560 +缇 5561 +骅 5562 +劭 5563 +college 5564 +卅 5565 +ups 5566 +揆 5567 +垅 5568 +na 5569 +6cm 5570 +琏 5571 +镗 5572 +苜 5573 +胛 5574 +1881 5575 +black 5576 +珏 5577 +吮 5578 +抠 5579 +搔 5580 +276 5581 +rock 5582 +251 5583 +槎 5584 +4200 5585 +323 5586 +掣 5587 +pet 5588 +1887 5589 +ap 5590 +琨 5591 +餮 5592 +375 5593 +舛 5594 +give 5595 +si 5596 +痤 5597 +us 5598 +311 5599 +278 5600 +埭 5601 +english 5602 +peter 5603 +1891 5604 +820 5605 +胪 5606 +喹 5607 +妲 5608 +婀 5609 +帙 5610 +10g 5611 +oa 5612 +7500 5613 +箩 5614 +灏 5615 +霎 5616 +logo 5617 +袄 5618 +dsp 5619 +bl 5620 +镭 5621 +蓿 5622 +power 5623 +long 5624 +墉 5625 +too 5626 +嵊 5627 +1862 5628 +girl 5629 +堇 5630 +king 5631 +蟋 5632 +610 5633 +叽 5634 +249 5635 +钎 5636 +30cm 5637 +fm 5638 +録 5639 +group 5640 +1883 5641 +郓 5642 +瘴 5643 +vol 5644 +丶 5645 +呦 5646 +邬 5647 +頫 5648 +272 5649 +馁 5650 +hiv 5651 +鄢 5652 +257 5653 +1876 5654 +ordm 5655 +蛭 5656 +322 5657 +愍 5658 +锲 5659 +槿 5660 +珈 5661 +best 5662 +4800 5663 +mri 5664 +1080 5665 +fda 5666 +10mm 5667 +261 5668 +nt 5669 +660 5670 +super 5671 +1m 5672 +center 5673 +ui 5674 +335 5675 +蜃 5676 +298 5677 +拎 5678 +鎏 5679 +裟 5680 +沏 5681 +np 5682 +螭 5683 +7mm 5684 +觑 5685 +墒 5686 +捺 5687 +轸 5688 +micro 5689 +榫 5690 +based 5691 +319 5692 +怔 5693 +ram 5694 +618 5695 +昀 5696 +even 5697 +泷 5698 +1864 5699 +ca 5700 +凫 5701 +唠 5702 +狰 5703 +鲛 5704 +氐 5705 +呛 5706 +绀 5707 +碛 5708 +茏 5709 +盅 5710 +蟀 5711 +洙 5712 +off 5713 +訇 5714 +蠹 5715 +auml 5716 +dos 5717 +20cm 5718 +267 5719 +棂 5720 +18000 5721 +蚴 5722 +篾 5723 +two 5724 +靛 5725 +暄 5726 +show 5727 +1868 5728 +泞 5729 +cdma 5730 +mark 5731 +vc 5732 +洄 5733 +赓 5734 +麽 5735 +25000 5736 +篓 5737 +孑 5738 +860 5739 +烩 5740 +980 5741 +design 5742 +颢 5743 +钣 5744 +var 5745 +髂 5746 +蹴 5747 +wanna 5748 +筮 5749 +蝌 5750 +醮 5751 +home 5752 +菖 5753 +fun 5754 +cmos 5755 +獗 5756 +friends 5757 +business 5758 +岘 5759 +570 5760 +鼐 5761 +1865 5762 +姣 5763 +national 5764 +1874 5765 +蟑 5766 +袈 5767 +葶 5768 +掬 5769 +most 5770 +vga 5771 +emba 5772 +躇 5773 +30g 5774 +鹌 5775 +city 5776 +踌 5777 +282 5778 +钹 5779 +蚪 5780 +颧 5781 +001 5782 +13000 5783 +鹳 5784 +274 5785 +km 5786 +345 5787 +1050 5788 +stop 5789 +328 5790 +then 5791 +鲲 5792 +驷 5793 +潴 5794 +295 5795 +386 5796 +焱 5797 +稔 5798 +悌 5799 +mpeg 5800 +st 5801 +suv 5802 +vista 5803 +a1 5804 +vi 5805 +283 5806 +help 5807 +basic 5808 +唏 5809 +11000 5810 +苒 5811 +蹙 5812 +house 5813 +heart 5814 +ouml 5815 +281 5816 +氩 5817 +bug 5818 +mobile 5819 +宓 5820 +service 5821 +dll 5822 +綦 5823 +苎 5824 +application 5825 +疃 5826 +methyl 5827 +攫 5828 +rfid 5829 +100g 5830 +287 5831 +掾 5832 +1871 5833 +徭 5834 +490 5835 +舀 5836 +逶 5837 +嗤 5838 +760 5839 +0m 5840 +ge 5841 +1872 5842 +people 5843 +hr 5844 +蜷 5845 +茔 5846 +512 5847 +疳 5848 +迳 5849 +罄 5850 +瓠 5851 +100mg 5852 +讪 5853 +psp 5854 +av 5855 +傈 5856 +ppp 5857 +杲 5858 +灞 5859 +氲 5860 +鬲 5861 +獠 5862 +柒 5863 +骧 5864 +1848 5865 +away 5866 +william 5867 +326 5868 +搀 5869 +珩 5870 +绦 5871 +1879 5872 +嚏 5873 +710 5874 +镛 5875 +喱 5876 +倏 5877 +馋 5878 +茭 5879 +擘 5880 +斫 5881 +284 5882 +1mg 5883 +怂 5884 +hdmi 5885 +唧 5886 +犍 5887 +谩 5888 +赊 5889 +317 5890 +271 5891 +wu 5892 +鬻 5893 +禛 5894 +15cm 5895 +259 5896 +840 5897 +feel 5898 +485 5899 +圻 5900 +10m 5901 +蹶 5902 +5kg 5903 +1877 5904 +1873 5905 +缄 5906 +瘿 5907 +黠 5908 +甑 5909 +矸 5910 +嘀 5911 +il 5912 +蹼 5913 +jack 5914 +lee 5915 +269 5916 +叼 5917 +di 5918 +313 5919 +旻 5920 +auc 5921 +502 5922 +1350 5923 +鹜 5924 +289 5925 +fc 5926 +稗 5927 +336 5928 +999 5929 +association 5930 +many 5931 +293 5932 +雒 5933 +george 5934 +td 5935 +赉 5936 +style 5937 +馔 5938 +颦 5939 +ul 5940 +ld50 5941 +1867 5942 +颔 5943 +掇 5944 +1863 5945 +each 5946 +赅 5947 +桎 5948 +inc 5949 +痧 5950 +dv 5951 +谄 5952 +孛 5953 +笆 5954 +鲶 5955 +铳 5956 +3100 5957 +mc 5958 +tell 5959 +4m 5960 +blue 5961 +327 5962 +299 5963 +bios 5964 +龋 5965 +385 5966 +盱 5967 +笏 5968 +2030 5969 +窕 5970 +苴 5971 +314 5972 +big 5973 +1866 5974 +296 5975 +萋 5976 +355 5977 +辘 5978 +琬 5979 +cu 5980 +梏 5981 +much 5982 +蚧 5983 +3400 5984 +1280 5985 +镳 5986 +24h 5987 +own 5988 +670 5989 +studio 5990 +瞅 5991 +keep 5992 +6g 5993 +ppt 5994 +conference 5995 +around 5996 +information 5997 +睬 5998 +1878 5999 +class 6000 +偌 6001 +鲵 6002 +惦 6003 +1830 6004 +蜍 6005 +mp4 6006 +why 6007 +靼 6008 +1851 6009 +332 6010 +阗 6011 +菟 6012 +黝 6013 +1650 6014 +control 6015 +挈 6016 +嵴 6017 +剡 6018 +358 6019 +楸 6020 +dha 6021 +氤 6022 +m1 6023 +vr 6024 +呎 6025 +珲 6026 +5ml 6027 +馄 6028 +滂 6029 +338 6030 +蹉 6031 +蓑 6032 +锷 6033 +297 6034 +279 6035 +啜 6036 +1644 6037 +sm 6038 +婵 6039 +well 6040 +鬣 6041 +7cm 6042 +钿 6043 +bbs 6044 +晌 6045 +蛆 6046 +隗 6047 +酞 6048 +枞 6049 +352 6050 +work 6051 +always 6052 +9g 6053 +戬 6054 +獾 6055 +镕 6056 +star 6057 +easy 6058 +饨 6059 +娣 6060 +缰 6061 +邾 6062 +334 6063 +8m 6064 +ni 6065 +鹗 6066 +277 6067 +425 6068 +end 6069 +had 6070 +嗒 6071 +苋 6072 +薮 6073 +棹 6074 +type 6075 +richard 6076 +880 6077 +6m 6078 +拄 6079 +air 6080 +埕 6081 +勖 6082 +鹞 6083 +殚 6084 +鲢 6085 +pop 6086 +a4 6087 +1750 6088 +ftp 6089 +16000 6090 +啖 6091 +ad 6092 +沣 6093 +501 6094 +靥 6095 +葭 6096 +诿 6097 +htc 6098 +鸪 6099 +007 6100 +饴 6101 +t1 6102 +疖 6103 +抟 6104 +睽 6105 +770 6106 +access 6107 +tcl 6108 +稞 6109 +吋 6110 +谀 6111 +澍 6112 +杈 6113 +妤 6114 +sata 6115 +part 6116 +峄 6117 +systems 6118 +漉 6119 +40000 6120 +ever 6121 +気 6122 +368 6123 +咲 6124 +qs 6125 +ta 6126 +璘 6127 +ltd 6128 +mol 6129 +media 6130 +萜 6131 +僭 6132 +朐 6133 +742 6134 +1855 6135 +cc 6136 +圜 6137 +癞 6138 +藿 6139 +555 6140 +珉 6141 +isp 6142 +set 6143 +1450 6144 +陉 6145 +him 6146 +僮 6147 +292 6148 +膻 6149 +1853 6150 +薹 6151 +810 6152 +汊 6153 +still 6154 +锗 6155 +昉 6156 +pvp 6157 +猗 6158 +http 6159 +1859 6160 +3700 6161 +strong 6162 +3a 6163 +锶 6164 +real 6165 +跛 6166 +art 6167 +1869 6168 +331 6169 +1368 6170 +嘹 6171 +337 6172 +瓤 6173 +402 6174 +衄 6175 +1856 6176 +1820 6177 +1150 6178 +matlab 6179 +豕 6180 +吆 6181 +腆 6182 +thomas 6183 +a2 6184 +294 6185 +le 6186 +366 6187 +using 6188 +356 6189 +bb 6190 +喆 6191 +smith 6192 +different 6193 +莴 6194 +401 6195 +谌 6196 +ci 6197 +珙 6198 +疥 6199 +kw 6200 +鲑 6201 +405 6202 +玷 6203 +蛔 6204 +砀 6205 +361 6206 +zh 6207 +nasa 6208 +materials 6209 +329 6210 +nature 6211 +1h 6212 +谔 6213 +睥 6214 +ch 6215 +20mg 6216 +2mg 6217 +du 6218 +mail 6219 +data 6220 +every 6221 +蹑 6222 +诒 6223 +逋 6224 +372 6225 +while 6226 +姝 6227 +刈 6228 +婧 6229 +going 6230 +喳 6231 +镞 6232 +铌 6233 +291 6234 +712 6235 +辎 6236 +鹧 6237 +檩 6238 +740 6239 +扪 6240 +10ml 6241 +霰 6242 +ar 6243 +裆 6244 +ol 6245 +嬷 6246 +0mm 6247 +ufo 6248 +charles 6249 +20mm 6250 +tvb 6251 +apple 6252 +刎 6253 +iec 6254 +project 6255 +sbs 6256 +嵋 6257 +342 6258 +690 6259 +悱 6260 +920 6261 +嘤 6262 +jean 6263 +篁 6264 +荸 6265 +瞑 6266 +殓 6267 +搽 6268 +50mg 6269 +343 6270 +橇 6271 +include 6272 +eva 6273 +雎 6274 +弭 6275 +獐 6276 +haccp 6277 +恿 6278 +video 6279 +cf 6280 +vpn 6281 +society 6282 +眦 6283 +730 6284 +铐 6285 +song 6286 +尕 6287 +捎 6288 +诟 6289 +institute 6290 +痨 6291 +cn 6292 +369 6293 +笞 6294 +756 6295 +version 6296 +des 6297 +sns 6298 +趺 6299 +590 6300 +award 6301 +唬 6302 +苣 6303 +css 6304 +lte 6305 +xu 6306 +fbi 6307 +啾 6308 +瘪 6309 +垸 6310 +357 6311 +橹 6312 +after 6313 +濛 6314 +曷 6315 +level 6316 +樾 6317 +very 6318 +汨 6319 +仟 6320 +姒 6321 +1858 6322 +again 6323 +怦 6324 +荏 6325 +tom 6326 +诤 6327 +苡 6328 +吭 6329 +830 6330 +dm 6331 +before 6332 +406 6333 +崆 6334 +氡 6335 +young 6336 +脩 6337 +lan 6338 +胝 6339 +钏 6340 +3ds 6341 +cr 6342 +arm 6343 +pos 6344 +night 6345 +屐 6346 +395 6347 +忐 6348 +彧 6349 +拚 6350 +鏖 6351 +344 6352 +100ml 6353 +525 6354 +孳 6355 +1024 6356 +yu 6357 +忑 6358 +384 6359 +邝 6360 +穰 6361 +403 6362 +摈 6363 +庖 6364 +351 6365 +鸵 6366 +398 6367 +hello 6368 +矽 6369 +354 6370 +鲟 6371 +said 6372 +381 6373 +768 6374 +発 6375 +762 6376 +sap 6377 +1854 6378 +msn 6379 +菅 6380 +book 6381 +353 6382 +true 6383 +339 6384 +javascript 6385 +348 6386 +2900 6387 +圪 6388 +蹋 6389 +衾 6390 +簋 6391 +璎 6392 +367 6393 +噎 6394 +911 6395 +嬗 6396 +346 6397 +肼 6398 +362 6399 +359 6400 +跎 6401 +滟 6402 +little 6403 +4300 6404 +701 6405 +戦 6406 +嵬 6407 +look 6408 +仝 6409 +phys 6410 +club 6411 +惇 6412 +纾 6413 +times 6414 +14000 6415 +炁 6416 +382 6417 +xyz 6418 +number 6419 +ak 6420 +mind 6421 +huang 6422 +闳 6423 +骐 6424 +秣 6425 +眙 6426 +谘 6427 +碓 6428 +iso9002 6429 +疔 6430 +412 6431 +恂 6432 +am 6433 +top 6434 +master 6435 +鳕 6436 +green 6437 +鸱 6438 +int 6439 +爨 6440 +镊 6441 +404 6442 +were 6443 +4600 6444 +em 6445 +better 6446 +钯 6447 +圮 6448 +楽 6449 +堀 6450 +1852 6451 +408 6452 +sat 6453 +1857 6454 +378 6455 +422 6456 +膘 6457 +705 6458 +噗 6459 +347 6460 +start 6461 +486 6462 +锹 6463 +505 6464 +杼 6465 +酊 6466 +same 6467 +376 6468 +white 6469 +挎 6470 +箸 6471 +郗 6472 +垌 6473 +sa 6474 +溏 6475 +martin 6476 +蔫 6477 +偻 6478 +364 6479 +妫 6480 +飚 6481 +625 6482 +601 6483 +辔 6484 +濬 6485 +666 6486 +ds 6487 +瑄 6488 +621 6489 +觚 6490 +5600 6491 +nhk 6492 +415 6493 +express 6494 +铍 6495 +bit 6496 +跚 6497 +9mm 6498 +翕 6499 +煊 6500 +these 6501 +50mm 6502 +gpu 6503 +b6 6504 +hip 6505 +耄 6506 +铋 6507 +篦 6508 +zhou 6509 +阇 6510 +骛 6511 +nvidia 6512 +莪 6513 +吲 6514 +youtube 6515 +唁 6516 +870 6517 +箧 6518 +503 6519 +tm 6520 +8500 6521 +really 6522 +珅 6523 +潋 6524 +迨 6525 +哽 6526 +without 6527 +砦 6528 +model 6529 +缗 6530 +hey 6531 +謇 6532 +呸 6533 +mrna 6534 +垓 6535 +糍 6536 +park 6537 +wap 6538 +璠 6539 +妣 6540 +狎 6541 +攥 6542 +396 6543 +闇 6544 +york 6545 +蛉 6546 +瑁 6547 +joe 6548 +腼 6549 +蹒 6550 +great 6551 +review 6552 +200mg 6553 +chris 6554 +www 6555 +嶷 6556 +online 6557 +莠 6558 +沤 6559 +哚 6560 +475 6561 +遑 6562 +v1 6563 +such 6564 +跺 6565 +膦 6566 +蹿 6567 +unix 6568 +hard 6569 +40cm 6570 +50cm 6571 +nothing 6572 +郫 6573 +zhao 6574 +玳 6575 +ma 6576 +boy 6577 +埚 6578 +url 6579 +432 6580 +network 6581 +aaaa 6582 +衿 6583 +371 6584 +try 6585 +醪 6586 +full 6587 +挹 6588 +raid 6589 +bg 6590 +绡 6591 +汜 6592 +digital 6593 +mb 6594 +c1 6595 +坩 6596 +ccc 6597 +旃 6598 +5200 6599 +607 6600 +itunes 6601 +powerpoint 6602 +鸨 6603 +between 6604 +407 6605 +翈 6606 +1842 6607 +1844 6608 +435 6609 +838 6610 +抡 6611 +chemistry 6612 +team 6613 +party 6614 +die 6615 +晞 6616 +place 6617 +care 6618 +盥 6619 +藁 6620 +蓖 6621 +383 6622 +cv 6623 +臊 6624 +made 6625 +state 6626 +465 6627 +羰 6628 +388 6629 +1620 6630 +sas 6631 +楝 6632 +噱 6633 +ji 6634 +饽 6635 +苌 6636 +soho 6637 +褓 6638 +佶 6639 +mp 6640 +581 6641 +years 6642 +1260 6643 +1680 6644 +hop 6645 +稜 6646 +瞠 6647 +仡 6648 +25mm 6649 +605 6650 +423 6651 +341 6652 +363 6653 +374 6654 +627 6655 +text 6656 +development 6657 +518 6658 +伉 6659 +襁 6660 +ug 6661 +change 6662 +713 6663 +涞 6664 +1849 6665 +蜇 6666 +抿 6667 +瑗 6668 +pda 6669 +418 6670 +un 6671 +line 6672 +958 6673 +孱 6674 +懑 6675 +416 6676 +von 6677 +373 6678 +淦 6679 +赝 6680 +core 6681 +dns 6682 +747 6683 +427 6684 +387 6685 +would 6686 +ipo 6687 +醌 6688 +551 6689 +缫 6690 +蠲 6691 +alt 6692 +嚓 6693 +鲷 6694 +湫 6695 +捋 6696 +1845 6697 +咩 6698 +裏 6699 +avi 6700 +犒 6701 +2050 6702 +墀 6703 +yeah 6704 +god 6705 +445 6706 +lesson 6707 +硐 6708 +蔸 6709 +399 6710 +758 6711 +pu 6712 +computer 6713 +456 6714 +钽 6715 +1847 6716 +麂 6717 +brown 6718 +store 6719 +蒡 6720 +鼹 6721 +绻 6722 +1821 6723 +錾 6724 +仃 6725 +515 6726 +篙 6727 +蕤 6728 +589 6729 +applied 6730 +737 6731 +930 6732 +c3 6733 +1841 6734 +铤 6735 +billboard 6736 +apec 6737 +槁 6738 +牖 6739 +螈 6740 +mary 6741 +俦 6742 +family 6743 +笄 6744 +color 6745 +啻 6746 +対 6747 +jsp 6748 +郤 6749 +next 6750 +iq 6751 +645 6752 +506 6753 +hbv 6754 +闼 6755 +a3 6756 +349 6757 +value 6758 +413 6759 +igg 6760 +411 6761 +426 6762 +醺 6763 +赍 6764 +檗 6765 +usa 6766 +裾 6767 +head 6768 +噫 6769 +掸 6770 +mike 6771 +箓 6772 +usb2 6773 +things 6774 +5800 6775 +5v 6776 +o2 6777 +妪 6778 +乂 6779 +蝈 6780 +砻 6781 +胍 6782 +220v 6783 +392 6784 +cba 6785 +397 6786 +535 6787 +idc 6788 +analysis 6789 +25mg 6790 +蜱 6791 +ti 6792 +2h 6793 +聃 6794 +雠 6795 +碚 6796 +椤 6797 +缯 6798 +昴 6799 +890 6800 +缱 6801 +祎 6802 +der 6803 +缬 6804 +ex 6805 +508 6806 +铙 6807 +cnc 6808 +pentium 6809 +孀 6810 +533 6811 +advanced 6812 +mpa 6813 +yl 6814 +笳 6815 +蘇 6816 +愆 6817 +685 6818 +榉 6819 +old 6820 +氙 6821 +call 6822 +alex 6823 +燹 6824 +撂 6825 +菽 6826 +583 6827 +箬 6828 +蛄 6829 +瘸 6830 +嬛 6831 +495 6832 +橐 6833 +could 6834 +60000 6835 +something 6836 +纡 6837 +刽 6838 +辂 6839 +hong 6840 +377 6841 +law 6842 +蒯 6843 +邨 6844 +1846 6845 +1550 6846 +r2 6847 +1837 6848 +赀 6849 +player 6850 +414 6851 +跸 6852 +phone 6853 +邙 6854 +hold 6855 +rgb 6856 +421 6857 +henry 6858 +2025 6859 +黟 6860 +409 6861 +磴 6862 +1815 6863 +mode 6864 +1843 6865 +闿 6866 +504 6867 +letters 6868 +1780 6869 +428 6870 +垟 6871 +389 6872 +t2 6873 +london 6874 +528 6875 +jpeg 6876 +嵯 6877 +钚 6878 +steve 6879 +跄 6880 +30min 6881 +527 6882 +潸 6883 +h2 6884 +35000 6885 +崴 6886 +eric 6887 +379 6888 +run 6889 +three 6890 +rf 6891 +left 6892 +455 6893 +恁 6894 +open 6895 +楮 6896 +556 6897 +bc 6898 +476 6899 +腧 6900 +458 6901 +plus 6902 +1812 6903 +1839 6904 +胨 6905 +b12 6906 +4d 6907 +芫 6908 +america 6909 +est 6910 +dream 6911 +碴 6912 +隰 6913 +杓 6914 +md 6915 +ya 6916 +global 6917 +436 6918 +15mm 6919 +2ml 6920 +貉 6921 +欹 6922 +sup3 6923 +侑 6924 +ea 6925 +鳜 6926 +910 6927 +ben 6928 +铄 6929 +椴 6930 +昇 6931 +醍 6932 +1020 6933 +798 6934 +midi 6935 +肓 6936 +features 6937 +lc 6938 +brian 6939 +akb48 6940 +缂 6941 +1835 6942 +test 6943 +铡 6944 +light 6945 +978 6946 +s1 6947 +1799 6948 +key 6949 +sim 6950 +1795 6951 +simple 6952 +energy 6953 +蹠 6954 +徂 6955 +west 6956 +725 6957 +body 6958 +豢 6959 +424 6960 +face 6961 +蒽 6962 +lin 6963 +805 6964 +1120 6965 +479 6966 +菡 6967 +bill 6968 +433 6969 +衲 6970 +阚 6971 +believe 6972 +brt 6973 +pa 6974 +last 6975 +芗 6976 +hu 6977 +sam 6978 +wei 6979 +adsl 6980 +602 6981 +mk 6982 +痍 6983 +玠 6984 +1832 6985 +523 6986 +晷 6987 +604 6988 +jj 6989 +468 6990 +淝 6991 +1560 6992 +鄯 6993 +ck 6994 +473 6995 +糗 6996 +耨 6997 +榧 6998 +394 6999 +940 7000 +eq 7001 +498 7002 +used 7003 +sc 7004 +胴 7005 +c2 7006 +蕈 7007 +screen 7008 +镬 7009 +635 7010 +鼾 7011 +431 7012 +education 7013 +wwe 7014 +摭 7015 +鸮 7016 +cl 7017 +5400 7018 +fpga 7019 +恚 7020 +419 7021 +実 7022 +asia 7023 +534 7024 +552 7025 +砝 7026 +100mm 7027 +pid 7028 +741 7029 +珣 7030 +under 7031 +603 7032 +寤 7033 +埙 7034 +mbc 7035 +tc 7036 +xxx 7037 +didn 7038 +478 7039 +mn 7040 +p1 7041 +锏 7042 +simon 7043 +ansi 7044 +438 7045 +hi 7046 +615 7047 +喟 7048 +蘅 7049 +骺 7050 +cell 7051 +捭 7052 +study 7053 +586 7054 +393 7055 +莜 7056 +should 7057 +xi 7058 +缶 7059 +f2 7060 +games 7061 +0g 7062 +1760 7063 +mini 7064 +johnson 7065 +jones 7066 +yes 7067 +锟 7068 +1825 7069 +叵 7070 +cm3 7071 +炷 7072 +1580 7073 +stay 7074 +675 7075 +another 7076 +6800 7077 +鲧 7078 +1736 7079 +ps2 7080 +胼 7081 +517 7082 +査 7083 +岬 7084 +2019 7085 +1640 7086 +rose 7087 +鹂 7088 +牯 7089 +珥 7090 +entertainment 7091 +448 7092 +und 7093 +496 7094 +莼 7095 +software 7096 +970 7097 +邠 7098 +5300 7099 +h1n1 7100 +488 7101 +da 7102 +眇 7103 +卟 7104 +変 7105 +20m 7106 +may 7107 +417 7108 +lady 7109 +galaxy 7110 +4100 7111 +惴 7112 +1789 7113 +846 7114 +801 7115 +渑 7116 +907 7117 +put 7118 +蚱 7119 +gone 7120 +606 7121 +t3 7122 +company 7123 +632 7124 +454 7125 +516 7126 +998 7127 +548 7128 +391 7129 +4700 7130 +瞌 7131 +ide 7132 +瘰 7133 +7200 7134 +佝 7135 +together 7136 +street 7137 +旸 7138 +626 7139 +衽 7140 +郅 7141 +奁 7142 +731 7143 +30mg 7144 +mvp 7145 +1370 7146 +60cm 7147 +12cm 7148 +魑 7149 +1828 7150 +628 7151 +everything 7152 +612 7153 +san 7154 +937 7155 +缛 7156 +2gb 7157 +lu 7158 +angel 7159 +20ml 7160 +576 7161 +颙 7162 +sony 7163 +790 7164 +press 7165 +镫 7166 +hall 7167 +簌 7168 +beautiful 7169 +豇 7170 +711 7171 +453 7172 +pm 7173 +姹 7174 +thing 7175 +442 7176 +邋 7177 +alpha 7178 +leave 7179 +暝 7180 +441 7181 +30mm 7182 +chapter 7183 +507 7184 +100000 7185 +526 7186 +directx 7187 +511 7188 +9cm 7189 +words 7190 +釐 7191 +619 7192 +洹 7193 +444 7194 +frank 7195 +咿 7196 +eyes 7197 +483 7198 +俳 7199 +522 7200 +蜊 7201 +醐 7202 +541 7203 +water 7204 +499 7205 +聩 7206 +non 7207 +bob 7208 +坻 7209 +532 7210 +757 7211 +545 7212 +毽 7213 +oo 7214 +喾 7215 +alone 7216 +scott 7217 +744 7218 +辋 7219 +river 7220 +zhu 7221 +倌 7222 +媪 7223 +蛳 7224 +滹 7225 +哙 7226 +nc 7227 +20g 7228 +阊 7229 +gs 7230 +queen 7231 +趸 7232 +1130 7233 +1645 7234 +祢 7235 +4mg 7236 +1814 7237 +girls 7238 +544 7239 +e1 7240 +籀 7241 +1210 7242 +1573 7243 +徼 7244 +ipv6 7245 +訾 7246 +髁 7247 +1a 7248 +jackson 7249 +砜 7250 +1836 7251 +les 7252 +4gb 7253 +撸 7254 +瓘 7255 +1790 7256 +缁 7257 +镓 7258 +sars 7259 +eps 7260 +519 7261 +sod 7262 +bp 7263 +1810 7264 +year 7265 +縻 7266 +sound 7267 +617 7268 +菀 7269 +1125 7270 +598 7271 +酢 7272 +桠 7273 +466 7274 +emc 7275 +撵 7276 +怏 7277 +429 7278 +1838 7279 +ready 7280 +渌 7281 +546 7282 +taylor 7283 +452 7284 +news 7285 +1180 7286 +568 7287 +2a 7288 +af 7289 +538 7290 +list 7291 +hot 7292 +1380 7293 +etc 7294 +1796 7295 +摞 7296 +mo 7297 +槲 7298 +levels 7299 +ht 7300 +浠 7301 +诜 7302 +魉 7303 +韫 7304 +daniel 7305 +亓 7306 +盤 7307 +pv 7308 +瑭 7309 +魍 7310 +1831 7311 +emi 7312 +襞 7313 +social 7314 +dreamweaver 7315 +爿 7316 +kbs 7317 +565 7318 +613 7319 +990 7320 +浃 7321 +樯 7322 +jb 7323 +讵 7324 +揩 7325 +physics 7326 +耋 7327 +帏 7328 +lng 7329 +崃 7330 +bs 7331 +457 7332 +enough 7333 +shy 7334 +521 7335 +596 7336 +ec 7337 +451 7338 +鸩 7339 +遢 7340 +turn 7341 +臃 7342 +available 7343 +4400 7344 +585 7345 +粿 7346 +1010 7347 +禳 7348 +hand 7349 +439 7350 +536 7351 +桫 7352 +link 7353 +side 7354 +earth 7355 +mx 7356 +髹 7357 +7m 7358 +482 7359 +诳 7360 +472 7361 +1140 7362 +707 7363 +622 7364 +wcdma 7365 +513 7366 +must 7367 +492 7368 +462 7369 +踉 7370 +40mg 7371 +948 7372 +cmax 7373 +郃 7374 +1320 7375 +v2 7376 +542 7377 +email 7378 +493 7379 +嗖 7380 +sup 7381 +讧 7382 +cnn 7383 +446 7384 +碁 7385 +17000 7386 +湎 7387 +30m 7388 +529 7389 +653 7390 +531 7391 +575 7392 +阏 7393 +sr 7394 +united 7395 +pm2 7396 +mt 7397 +媾 7398 +443 7399 +様 7400 +aac 7401 +806 7402 +哔 7403 +舸 7404 +vb 7405 +611 7406 +曩 7407 +821 7408 +gre 7409 +gl 7410 +cisco 7411 +忝 7412 +峁 7413 +掂 7414 +464 7415 +葳 7416 +487 7417 +437 7418 +including 7419 +715 7420 +鄄 7421 +558 7422 +both 7423 +谵 7424 +463 7425 +jim 7426 +608 7427 +m4 7428 +5100 7429 +彊 7430 +锴 7431 +war 7432 +郜 7433 +money 7434 +481 7435 +葖 7436 +1824 7437 +tnt 7438 +蓇 7439 +瓴 7440 +鳟 7441 +橼 7442 +5s 7443 +louis 7444 +434 7445 +鲇 7446 +邗 7447 +el 7448 +犄 7449 +秭 7450 +3900 7451 +records 7452 +view 7453 +chemical 7454 +1001 7455 +1mol 7456 +dance 7457 +668 7458 +dl 7459 +槭 7460 +缵 7461 +que 7462 +624 7463 +rt 7464 +1823 7465 +1805 7466 +005 7467 +1826 7468 +巯 7469 +sgs 7470 +user 7471 +龊 7472 +qc 7473 +狍 7474 +island 7475 +language 7476 +space 7477 +擞 7478 +saint 7479 +2n 7480 +pt 7481 +share 7482 +瞽 7483 +hotel 7484 +christian 7485 +557 7486 +栲 7487 +撅 7488 +2b 7489 +1801 7490 +447 7491 +1822 7492 +瑀 7493 +smt 7494 +hk 7495 +1834 7496 +戢 7497 +825 7498 +50ml 7499 +朓 7500 +逖 7501 +general 7502 +椹 7503 +nm 7504 +洺 7505 +cae 7506 +484 7507 +艏 7508 +wma 7509 +zn 7510 +苁 7511 +single 7512 +599 7513 +c4 7514 +滘 7515 +777 7516 +铧 7517 +侪 7518 +ocirc 7519 +1kg 7520 +684 7521 +豳 7522 +skf 7523 +12mm 7524 +489 7525 +hla 7526 +竦 7527 +貔 7528 +ld 7529 +being 7530 +562 7531 +圄 7532 +van 7533 +gm 7534 +688 7535 +655 7536 +special 7537 +呷 7538 +edition 7539 +1s 7540 +jiang 7541 +131108 7542 +514 7543 +1792 7544 +ncaa 7545 +1833 7546 +旄 7547 +遛 7548 +jr 7549 +program 7550 +656 7551 +467 7552 +ing 7553 +901 7554 +755 7555 +509 7556 +芈 7557 +kong 7558 +rp 7559 +砣 7560 +桷 7561 +audio 7562 +icp 7563 +happy 7564 +龌 7565 +done 7566 +疬 7567 +japan 7568 +ts 7569 +mit 7570 +p2 7571 +524 7572 +looking 7573 +miss 7574 +缟 7575 +582 7576 +洌 7577 +35mm 7578 +494 7579 +grand 7580 +跏 7581 +those 7582 +joseph 7583 +ctrl 7584 +547 7585 +1040 7586 +686 7587 +蝮 7588 +lp 7589 +cod 7590 +菰 7591 +sio2 7592 +txt 7593 +1770 7594 +1060 7595 +帑 7596 +767 7597 +north 7598 +fcc 7599 +怙 7600 +ester 7601 +718 7602 +story 7603 +edi 7604 +634 7605 +1360 7606 +豸 7607 +1660 7608 +lh 7609 +雩 7610 +1230 7611 +magic 7612 +誊 7613 +549 7614 +臬 7615 +4k 7616 +op 7617 +1662 7618 +651 7619 +镣 7620 +箇 7621 +616 7622 +title 7623 +sciences 7624 +25cm 7625 +踱 7626 +s2 7627 +t4 7628 +钍 7629 +648 7630 +100m 7631 +543 7632 +588 7633 +苫 7634 +554 7635 +蝽 7636 +r1 7637 +3mg 7638 +amino 7639 +1776 7640 +浯 7641 +609 7642 +772 7643 +ca2 7644 +vlan 7645 +469 7646 +500mg 7647 +単 7648 +road 7649 +亶 7650 +636 7651 +metal 7652 +device 7653 +40mm 7654 +囹 7655 +穑 7656 +1730 7657 +佻 7658 +1818 7659 +绌 7660 +12g 7661 +537 7662 +诔 7663 +pve 7664 +autodesk 7665 +477 7666 +v8 7667 +ray 7668 +gp 7669 +span 7670 +gc 7671 +size 7672 +716 7673 +鹬 7674 +ssl 7675 +crt 7676 +1670 7677 +925 7678 +髌 7679 +pn 7680 +1127 7681 +702 7682 +658 7683 +services 7684 +support 7685 +1802 7686 +蒌 7687 +coming 7688 +experience 7689 +nbc 7690 +鳏 7691 +631 7692 +638 7693 +ace 7694 +0cm 7695 +ems 7696 +9001 7697 +殄 7698 +yen 7699 +soc 7700 +ethyl 7701 +怛 7702 +tf 7703 +筌 7704 +刳 7705 +studies 7706 +theory 7707 +1030 7708 +578 7709 +radio 7710 +翮 7711 +卍 7712 +畹 7713 +471 7714 +704 7715 +because 7716 +1610 7717 +箜 7718 +save 7719 +燔 7720 +赳 7721 +553 7722 +1809 7723 +篌 7724 +窨 7725 +翥 7726 +785 7727 +炅 7728 +钕 7729 +lett 7730 +803 7731 +1827 7732 +academy 7733 +ed 7734 +629 7735 +sf 7736 +pr 7737 +hill 7738 +explorer 7739 +future 7740 +food 7741 +莳 7742 +662 7743 +567 7744 +dcs 7745 +忖 7746 +戡 7747 +1086 7748 +1190 7749 +1829 7750 +bad 7751 +es 7752 +15m 7753 +order 7754 +spring 7755 +沢 7756 +south 7757 +497 7758 +025 7759 +move 7760 +狒 7761 +1630 7762 +圉 7763 +abb 7764 +449 7765 +learn 7766 +l0 7767 +d2 7768 +5d 7769 +wav 7770 +琯 7771 +邰 7772 +cis 7773 +quality 7774 +odm 7775 +926 7776 +acta 7777 +root 7778 +smart 7779 +1661 7780 +苾 7781 +cm2 7782 +photos 7783 +l2 7784 +via 7785 +sk 7786 +犸 7787 +623 7788 +邡 7789 +feeling 7790 +572 7791 +郏 7792 +襦 7793 +python 7794 +bmw 7795 +888 7796 +guo 7797 +epa 7798 +williams 7799 +沆 7800 +813 7801 +bot 7802 +read 7803 +function 7804 +wilson 7805 +1723 7806 +enterprise 7807 +玟 7808 +50hz 7809 +s26 7810 +fire 7811 +engineer 7812 +tony 7813 +1819 7814 +濉 7815 +rh 7816 +洎 7817 +莨 7818 +氘 7819 +pb 7820 +咛 7821 +1720 7822 +佺 7823 +1460 7824 +815 7825 +cbs 7826 +腩 7827 +beta 7828 +鳔 7829 +1735 7830 +yan 7831 +1gb 7832 +x2 7833 +剜 7834 +秕 7835 +牝 7836 +芨 7837 +din 7838 +関 7839 +del 7840 +sms 7841 +649 7842 +pal 7843 +1369 7844 +far 7845 +maya 7846 +654 7847 +拊 7848 +812 7849 +595 7850 +竑 7851 +50m 7852 +圹 7853 +close 7854 +eos 7855 +颡 7856 +1420 7857 +6300 7858 +1816 7859 +wrong 7860 +break 7861 +573 7862 +765 7863 +file 7864 +friend 7865 +002 7866 +摺 7867 +683 7868 +nx 7869 +沩 7870 +蜉 7871 +please 7872 +1170 7873 +ro 7874 +6400 7875 +筚 7876 +nick 7877 +acm 7878 +愔 7879 +ati 7880 +point 7881 +肟 7882 +766 7883 +俶 7884 +fast 7885 +ata 7886 +d1 7887 +678 7888 +geforce 7889 +1710 7890 +yahoo 7891 +堃 7892 +绉 7893 +mysql 7894 +1793 7895 +奭 7896 +gap 7897 +iso14000 7898 +uk 7899 +astm 7900 +h2o 7901 +n2 7902 +film 7903 +method 7904 +1804 7905 +罅 7906 +so2 7907 +嗳 7908 +665 7909 +adam 7910 +uc 7911 +蜢 7912 +1806 7913 +1775 7914 +photo 7915 +疠 7916 +474 7917 +image 7918 +200mm 7919 +sure 7920 +561 7921 +帔 7922 +髡 7923 +643 7924 +黥 7925 +1813 7926 +proceedings 7927 +褛 7928 +柰 7929 +beyond 7930 +royal 7931 +else 7932 +eda 7933 +808 7934 +ddr 7935 +gif 7936 +鏊 7937 +l1 7938 +痼 7939 +571 7940 +waiting 7941 +堞 7942 +code 7943 +652 7944 +rss 7945 +learning 7946 +嗝 7947 +461 7948 +beijing 7949 +娉 7950 +566 7951 +577 7952 +708 7953 +1520 7954 +689 7955 +kevin 7956 +human 7957 +661 7958 +539 7959 +875 7960 +1811 7961 +ssci 7962 +6600 7963 +戕 7964 +587 7965 +735 7966 +3s 7967 +铱 7968 +耜 7969 +觥 7970 +867 7971 +镒 7972 +584 7973 +呓 7974 +1522 7975 +904 7976 +case 7977 +1101 7978 +491 7979 +1080p 7980 +history 7981 +蒹 7982 +栱 7983 +im 7984 +564 7985 +f4 7986 +卮 7987 +琚 7988 +salt 7989 +jason 7990 +rohs 7991 +12v 7992 +hydroxy 7993 +逦 7994 +modem 7995 +font 7996 +酩 7997 +蓍 7998 +cry 7999 +65536 8000 +health 8001 +虺 8002 +1798 8003 +tonight 8004 +small 8005 +谠 8006 +1570 8007 +1220 8008 +jane 8009 +against 8010 +597 8011 +751 8012 +459 8013 +bd 8014 +鼋 8015 +焗 8016 +udp 8017 +process 8018 +1070 8019 +1807 8020 +children 8021 +8g 8022 +eb 8023 +62mm 8024 +22000 8025 +add 8026 +1440 8027 +褴 8028 +rm 8029 +25g 8030 +ccedil 8031 +706 8032 +714 8033 +5l 8034 +砒 8035 +赧 8036 +蛏 8037 +709 8038 +蚬 8039 +1530 8040 +瘕 8041 +5h 8042 +559 8043 +jay 8044 +iga 8045 +020 8046 +fall 8047 +scsi 8048 +顗 8049 +isdn 8050 +death 8051 +563 8052 +today 8053 +愠 8054 +dvi 8055 +勣 8056 +wait 8057 +1642 8058 +飕 8059 +徳 8060 +滢 8061 +琇 8062 +鳙 8063 +db 8064 +瞟 8065 +尻 8066 +force 8067 +400mg 8068 +澶 8069 +荽 8070 +舐 8071 +arts 8072 +ha 8073 +east 8074 +lost 8075 +effects 8076 +1628 8077 +album 8078 +harry 8079 +633 8080 +dark 8081 +public 8082 +2250 8083 +soul 8084 +826 8085 +659 8086 +exo 8087 +侂 8088 +733 8089 +se 8090 +黼 8091 +icu 8092 +4h 8093 +market 8094 +潟 8095 +7800 8096 +绂 8097 +瘗 8098 +ngc 8099 +1794 8100 +crazy 8101 +蓥 8102 +竽 8103 +濞 8104 +igm 8105 +scdma 8106 +6200 8107 +cb 8108 +835 8109 +699 8110 +骖 8111 +偁 8112 +bmp 8113 +809 8114 +1270 8115 +oled 8116 +応 8117 +1160 8118 +1621 8119 +锜 8120 +g3 8121 +ova 8122 +cheng 8123 +614 8124 +匏 8125 +thinkpad 8126 +赑 8127 +fps 8128 +create 8129 +kim 8130 +讦 8131 +1480 8132 +诨 8133 +1540 8134 +rev 8135 +1v1 8136 +罘 8137 +fans 8138 +巖 8139 +1740 8140 +ag 8141 +嫘 8142 +1649 8143 +ps3 8144 +908 8145 +颀 8146 +g1 8147 +703 8148 +岿 8149 +v3 8150 +虻 8151 +936 8152 +fl 8153 +c2c 8154 +罴 8155 +environmental 8156 +paris 8157 +594 8158 +hear 8159 +囗 8160 +jump 8161 +communications 8162 +溆 8163 +talk 8164 +噤 8165 +824 8166 +骝 8167 +003 8168 +咂 8169 +695 8170 +728 8171 +e2 8172 +nec 8173 +iptv 8174 +1797 8175 +kelly 8176 +500ml 8177 +锛 8178 +721 8179 +rc 8180 +1808 8181 +ldl 8182 +1240 8183 +槊 8184 +radeon 8185 +676 8186 +啕 8187 +tang 8188 +plant 8189 +50g 8190 +驽 8191 +professional 8192 +凇 8193 +698 8194 +s36 8195 +lord 8196 +search 8197 +alan 8198 +籴 8199 +pd 8200 +1403 8201 +硖 8202 +1791 8203 +816 8204 +1636 8205 +3h 8206 +gsp 8207 +811 8208 +sky 8209 +1632 8210 +铯 8211 +christmas 8212 +怿 8213 +笥 8214 +matter 8215 +574 8216 +噙 8217 +倨 8218 +effect 8219 +647 8220 +779 8221 +1803 8222 +657 8223 +sorry 8224 +awards 8225 +igbt 8226 +pwm 8227 +坭 8228 +醅 8229 +sos 8230 +976 8231 +592 8232 +滏 8233 +10min 8234 +682 8235 +cs3 8236 +悻 8237 +did 8238 +mater 8239 +579 8240 +聒 8241 +1724 8242 +feng 8243 +low 8244 +mhz 8245 +836 8246 +722 8247 +枥 8248 +726 8249 +昺 8250 +bank 8251 +memory 8252 +rap 8253 +975 8254 +663 8255 +ips 8256 +酆 8257 +2kg 8258 +787 8259 +簟 8260 +睇 8261 +轫 8262 +溱 8263 +骢 8264 +榘 8265 +642 8266 +珺 8267 +跹 8268 +677 8269 +series 8270 +nlp 8271 +raquo 8272 +蚶 8273 +stone 8274 +1672 8275 +1817 8276 +1646 8277 +827 8278 +驺 8279 +ko 8280 +security 8281 +perfect 8282 +alexander 8283 +746 8284 +tt 8285 +check 8286 +804 8287 +饧 8288 +15mg 8289 +sir 8290 +moon 8291 +doesn 8292 +591 8293 +inside 8294 +tim 8295 +672 8296 +641 8297 +噼 8298 +儆 8299 +1w 8300 +氚 8301 +646 8302 +哧 8303 +1783 8304 +旒 8305 +鸬 8306 +1648 8307 +夥 8308 +ev 8309 +1688 8310 +score 8311 +standard 8312 +玦 8313 +723 8314 +貅 8315 +揄 8316 +戗 8317 +fx 8318 +938 8319 +璩 8320 +fu 8321 +1654 8322 +剐 8323 +010 8324 +cpi 8325 +垴 8326 +蘼 8327 +hz 8328 +1521 8329 +1067 8330 +727 8331 +ah 8332 +lv 8333 +916 8334 +裒 8335 +639 8336 +han 8337 +躅 8338 +1715 8339 +唳 8340 +form 8341 +second 8342 +嗑 8343 +荦 8344 +674 8345 +霈 8346 +jin 8347 +缦 8348 +啭 8349 +pi 8350 +1788 8351 +rx 8352 +隈 8353 +gao 8354 +sdk 8355 +zheng 8356 +悫 8357 +745 8358 +href 8359 +593 8360 +ngo 8361 +multi 8362 +d3 8363 +彀 8364 +637 8365 +1276 8366 +悭 8367 +found 8368 +jis 8369 +5700 8370 +焓 8371 +1234 8372 +80cm 8373 +磔 8374 +aim 8375 +1778 8376 +蓊 8377 +act 8378 +569 8379 +xiao 8380 +郾 8381 +717 8382 +786 8383 +return 8384 +5min 8385 +1582 8386 +etf 8387 +1590 8388 +action 8389 +1625 8390 +sarah 8391 +yourself 8392 +枧 8393 +鹚 8394 +10kg 8395 +80000 8396 +検 8397 +775 8398 +818 8399 +stephen 8400 +gui 8401 +屃 8402 +644 8403 +9500 8404 +v6 8405 +馑 8406 +wlan 8407 +hs 8408 +2048 8409 +area 8410 +1616 8411 +andrew 8412 +8226 8413 +6mg 8414 +1567 8415 +1763 8416 +1470 8417 +嗲 8418 +pps 8419 +铟 8420 +rca 8421 +pierre 8422 +687 8423 +null 8424 +manager 8425 +738 8426 +sdh 8427 +828 8428 +薤 8429 +60g 8430 +300mg 8431 +jun 8432 +1685 8433 +favorite 8434 +making 8435 +playing 8436 +summer 8437 +754 8438 +692 8439 +涔 8440 +樗 8441 +664 8442 +忾 8443 +収 8444 +绺 8445 +945 8446 +h2s 8447 +bis 8448 +self 8449 +300mm 8450 +烊 8451 +opengl 8452 +912 8453 +acute 8454 +螫 8455 +黩 8456 +996 8457 +magazine 8458 +edward 8459 +su 8460 +elisa 8461 +hdl 8462 +cyp3a4 8463 +鞫 8464 +foundation 8465 +alice 8466 +ddr3 8467 +915 8468 +923 8469 +tbs 8470 +andy 8471 +field 8472 +date 8473 +transactions 8474 +limited 8475 +during 8476 +1126 8477 +鲠 8478 +1057 8479 +fan 8480 +嘭 8481 +缣 8482 +845 8483 +681 8484 +rw 8485 +mean 8486 +1566 8487 +become 8488 +economic 8489 +852 8490 +johnny 8491 +蒺 8492 +unique 8493 +黒 8494 +tu 8495 +boys 8496 +1330 8497 +885 8498 +getting 8499 +cj 8500 +1072 8501 +nh 8502 +ne 8503 +band 8504 +cool 8505 +724 8506 +771 8507 +骘 8508 +氖 8509 +content 8510 +842 8511 +镝 8512 +俅 8513 +谮 8514 +te 8515 +9600 8516 +drive 8517 +phenyl 8518 +1275 8519 +屦 8520 +cao 8521 +menu 8522 +823 8523 +摁 8524 +氪 8525 +蘧 8526 +active 8527 +sb 8528 +appl 8529 +988 8530 +1622 8531 +伝 8532 +1725 8533 +zero 8534 +1008 8535 +3kg 8536 +腠 8537 +叡 8538 +hit 8539 +鲂 8540 +mi 8541 +0kg 8542 +748 8543 +lite 8544 +enjoy 8545 +local 8546 +789 8547 +続 8548 +1506 8549 +seen 8550 +s3 8551 +1765 8552 +european 8553 +讣 8554 +gold 8555 +1279 8556 +736 8557 +965 8558 +pl 8559 +button 8560 +耷 8561 +1430 8562 +986 8563 +763 8564 +toefl 8565 +燊 8566 +鸷 8567 +jimmy 8568 +dota 8569 +955 8570 +861 8571 +猊 8572 +732 8573 +xbox 8574 +days 8575 +dan 8576 +673 8577 +833 8578 +囡 8579 +崤 8580 +4c 8581 +economics 8582 +23000 8583 +agent 8584 +html5 8585 +points 8586 +ryan 8587 +shi 8588 +砬 8589 +湜 8590 +reading 8591 +918 8592 +mine 8593 +adc 8594 +917 8595 +1592 8596 +1781 8597 +翚 8598 +峯 8599 +909 8600 +once 8601 +exchange 8602 +choose 8603 +current 8604 +symbian 8605 +ts16949 8606 +dave 8607 +machine 8608 +鲎 8609 +qos 8610 +蕖 8611 +1785 8612 +9m 8613 +cia 8614 +until 8615 +cs4 8616 +759 8617 +f3 8618 +903 8619 +24000 8620 +968 8621 +8mg 8622 +lewis 8623 +鹈 8624 +凼 8625 +snh48 8626 +866 8627 +泫 8628 +荑 8629 +黻 8630 +牂 8631 +1722 8632 +鄣 8633 +篑 8634 +ho 8635 +1110 8636 +1784 8637 +髭 8638 +陬 8639 +寔 8640 +dt 8641 +shanghai 8642 +疴 8643 +邽 8644 +987 8645 +45000 8646 +1042 8647 +喏 8648 +彖 8649 +sl 8650 +saas 8651 +814 8652 +28000 8653 +a5 8654 +彘 8655 +赟 8656 +819 8657 +foxpro 8658 +shit 8659 +822 8660 +盹 8661 +诮 8662 +鸫 8663 +per 8664 +does 8665 +150mm 8666 +products 8667 +camp 8668 +select 8669 +capital 8670 +茕 8671 +corporation 8672 +26000 8673 +铖 8674 +954 8675 +dd 8676 +闩 8677 +string 8678 +page 8679 +ba 8680 +671 8681 +読 8682 +782 8683 +鄜 8684 +漈 8685 +盍 8686 +dlp 8687 +729 8688 +甭 8689 +愎 8690 +outlook 8691 +wii 8692 +ue 8693 +1787 8694 +festival 8695 +communication 8696 +channel 8697 +gary 8698 +1755 8699 +1774 8700 +8600 8701 +copy 8702 +150mg 8703 +魃 8704 +dragon 8705 +1056 8706 +c5 8707 +炆 8708 +track 8709 +hdpe 8710 +liang 8711 +鍊 8712 +1800mhz 8713 +1619 8714 +蛐 8715 +995 8716 +21000 8717 +薜 8718 +win 8719 +1394 8720 +1786 8721 +rain 8722 +楯 8723 +table 8724 +鲀 8725 +逡 8726 +itu 8727 +applications 8728 +mmorpg 8729 +嘞 8730 +s7 8731 +696 8732 +侔 8733 +1069 8734 +觇 8735 +lbs 8736 +0mg 8737 +car 8738 +wave 8739 +糸 8740 +踮 8741 +狷 8742 +1552 8743 +1627 8744 +latest 8745 +step 8746 +886 8747 +761 8748 +菘 8749 +783 8750 +寳 8751 +esp 8752 +扃 8753 +865 8754 +jazz 8755 +k1 8756 +fine 8757 +child 8758 +kind 8759 +anna 8760 +60mg 8761 +997 8762 +maria 8763 +nk 8764 +792 8765 +raw 8766 +late 8767 +soa 8768 +905 8769 +cai 8770 +ttl 8771 +delphi 8772 +prince 8773 +1340 8774 +禊 8775 +synthesis 8776 +喑 8777 +rmb 8778 +miller 8779 +patrick 8780 +933 8781 +running 8782 +50kg 8783 +1398 8784 +ast 8785 +752 8786 +location 8787 +dead 8788 +塍 8789 +chateau 8790 +allows 8791 +forget 8792 +tg 8793 +921 8794 +栝 8795 +5w 8796 +kiss 8797 +1690 8798 +691 8799 +arthur 8800 +瓿 8801 +index 8802 +csa 8803 +rmvb 8804 +msc 8805 +廨 8806 +cas 8807 +known 8808 +h1 8809 +tj 8810 +j2ee 8811 +asian 8812 +841 8813 +1227 8814 +g20 8815 +cross 8816 +cos 8817 +ntilde 8818 +719 8819 +貘 8820 +dnf 8821 +california 8822 +france 8823 +modern 8824 +pacific 8825 +769 8826 +1066 8827 +turbo 8828 +753 8829 +795 8830 +669 8831 +1764 8832 +868 8833 +馕 8834 +僰 8835 +union 8836 +1772 8837 +2150 8838 +1063 8839 +哏 8840 +double 8841 +fight 8842 +858 8843 +math 8844 +bo 8845 +瑷 8846 +men 8847 +sea 8848 +6700 8849 +sem 8850 +697 8851 +疎 8852 +882 8853 +note 8854 +qi 8855 +uml 8856 +902 8857 +1637 8858 +tp 8859 +1290 8860 +1085 8861 +776 8862 +蝣 8863 +怵 8864 +阃 8865 +dps 8866 +1687 8867 +弢 8868 +镲 8869 +hcl 8870 +al2o3 8871 +js 8872 +auto 8873 +螅 8874 +1683 8875 +v5 8876 +culture 8877 +935 8878 +吖 8879 +edge 8880 +碲 8881 +voice 8882 +1007 8883 +bridge 8884 +855 8885 +008 8886 +夼 8887 +茌 8888 +battle 8889 +嗬 8890 +靺 8891 +dp 8892 +ae 8893 +1090 8894 +895 8895 +1012 8896 +1162 8897 +bi 8898 +778 8899 +髀 8900 +1575 8901 +pcm 8902 +15min 8903 +1598 8904 +铊 8905 +secret 8906 +739 8907 +200m 8908 +6h 8909 +matt 8910 +谡 8911 +card 8912 +mic 8913 +癔 8914 +ecu 8915 +16mm 8916 +984 8917 +镠 8918 +5km 8919 +dhcp 8920 +1753 8921 +巻 8922 +秾 8923 +living 8924 +gn 8925 +1643 8926 +framework 8927 +菪 8928 +679 8929 +赜 8930 +1782 8931 +four 8932 +铈 8933 +1777 8934 +british 8935 +shell 8936 +santa 8937 +yuan 8938 +20ma 8939 +fly 8940 +927 8941 +qu 8942 +nds 8943 +qaq 8944 +bar 8945 +髙 8946 +arp 8947 +1667 8948 +1773 8949 +693 8950 +main 8951 +鲳 8952 +1510 8953 +1002 8954 +2022 8955 +cdna 8956 +box 8957 +珰 8958 +100km 8959 +004 8960 +畋 8961 +bring 8962 +泅 8963 +959 8964 +hpv 8965 +makes 8966 +cmv 8967 +鲅 8968 +tmd 8969 +1762 8970 +854 8971 +泚 8972 +ghost 8973 +short 8974 +mcu 8975 +1768 8976 +cat 8977 +963 8978 +1757 8979 +1206 8980 +1207 8981 +puzzle 8982 +793 8983 +central 8984 +859 8985 +飏 8986 +walter 8987 +60hz 8988 +anderson 8989 +1727 8990 +thought 8991 +屍 8992 +仨 8993 +864 8994 +molecular 8995 +856 8996 +dong 8997 +financial 8998 +1728 8999 +surface 9000 +g2 9001 +mf 9002 +葚 9003 +叻 9004 +solidworks 9005 +res 9006 +speed 9007 +1195 9008 +咻 9009 +ascii 9010 +1404 9011 +784 9012 +jeff 9013 +衩 9014 +1371 9015 +land 9016 +biology 9017 +1655 9018 +郄 9019 +otc 9020 +sio 9021 +1310 9022 +1605 9023 +蹩 9024 +mems 9025 +1618 9026 +m16 9027 +complete 9028 +industrial 9029 +acs 9030 +1603 9031 +kids 9032 +tour 9033 +u2 9034 +allen 9035 +1756 9036 +743 9037 +嬖 9038 +踽 9039 +davis 9040 +柽 9041 +鞨 9042 +65279 9043 +7600 9044 +30ml 9045 +957 9046 +0l 9047 +734 9048 +p450 9049 +956 9050 +ir 9051 +麴 9052 +500mm 9053 +casio 9054 +1038 9055 +roger 9056 +library 9057 +015 9058 +1652 9059 +薙 9060 +within 9061 +hands 9062 +874 9063 +ntsc 9064 +钇 9065 +whole 9066 +jq 9067 +氵 9068 +垆 9069 +post 9070 +sweet 9071 +wall 9072 +898 9073 +cs5 9074 +feo 9075 +9800 9076 +cms 9077 +1390 9078 +since 9079 +medical 9080 +犟 9081 +1492 9082 +罍 9083 +stand 9084 +justin 9085 +lake 9086 +i5 9087 +1729 9088 +bell 9089 +ruby 9090 +important 9091 +bout 9092 +images 9093 +lab 9094 +962 9095 +1759 9096 +rj 9097 +cache 9098 +nb 9099 +production 9100 +経 9101 +807 9102 +1771 9103 +doing 9104 +粜 9105 +tnf 9106 +ws 9107 +guide 9108 +bim 9109 +events 9110 +1626 9111 +1016 9112 +焜 9113 +performance 9114 +ra 9115 +zl 9116 +牀 9117 +1568 9118 +1647 9119 +埝 9120 +洧 9121 +1615 9122 +shift 9123 +788 9124 +shen 9125 +1588 9126 +60mm 9127 +覧 9128 +tuv 9129 +1673 9130 +electronic 9131 +mos 9132 +蓣 9133 +8kg 9134 +862 9135 +echo 9136 +1572 9137 +section 9138 +981 9139 +甯 9140 +sg 9141 +1664 9142 +understand 9143 +hsk 9144 +delta 9145 +x86 9146 +eap 9147 +block 9148 +1578 9149 +er 9150 +xl 9151 +蒐 9152 +馐 9153 +nox 9154 +畑 9155 +ib 9156 +trying 9157 +ann 9158 +1635 9159 +apache 9160 +naoh 9161 +12345 9162 +缑 9163 +礽 9164 +1624 9165 +694 9166 +瞋 9167 +1601 9168 +浍 9169 +983 9170 +773 9171 +1000m 9172 +someone 9173 +15kg 9174 +25m 9175 +847 9176 +袢 9177 +桕 9178 +1037 9179 +jerry 9180 +843 9181 +picture 9182 +919 9183 +e3 9184 +printf 9185 +3gs 9186 +marie 9187 +853 9188 +rj45 9189 +侩 9190 +913 9191 +896 9192 +lose 9193 +unicode 9194 +100cm 9195 +1711 9196 +charlie 9197 +詈 9198 +戸 9199 +1689 9200 +room 9201 +烝 9202 +beat 9203 +堌 9204 +伋 9205 +hplc 9206 +9300 9207 +110kv 9208 +nfc 9209 +倬 9210 +764 9211 +iis 9212 +圯 9213 +solo 9214 +碇 9215 +ef 9216 +round 9217 +chang 9218 +1366 9219 +781 9220 +1585 9221 +982 9222 +socket 9223 +df 9224 +892 9225 +1536 9226 +831 9227 +ren 9228 +6kg 9229 +4900 9230 +纰 9231 +object 9232 +forever 9233 +832 9234 +951 9235 +qr 9236 +1023 9237 +8800 9238 +4kg 9239 +磾 9240 +泔 9241 +1131 9242 +纮 9243 +蓁 9244 +971 9245 +building 9246 +1021 9247 +铗 9248 +939 9249 +弇 9250 +挲 9251 +crystal 9252 +艉 9253 +smtp 9254 +鱬 9255 +cims 9256 +fang 9257 +1265 9258 +trans 9259 +pan 9260 +1745 9261 +1604 9262 +泺 9263 +橛 9264 +817 9265 +796 9266 +袴 9267 +cosplay 9268 +1154 9269 +1189 9270 +749 9271 +794 9272 +1068 9273 +881 9274 +hc 9275 +hope 9276 +1410 9277 +couldn 9278 +1638 9279 +992 9280 +along 9281 +age 9282 +250mg 9283 +clear 9284 +aps 9285 +1631 9286 +1011 9287 +provides 9288 +1123 9289 +1701 9290 +36000 9291 +csf 9292 +韪 9293 +n1 9294 +works 9295 +籓 9296 +967 9297 +ptc 9298 +贶 9299 +1111 9300 +1651 9301 +棰 9302 +1726 9303 +sar 9304 +1666 9305 +qvga 9306 +hf 9307 +coreldraw 9308 +possible 9309 +趵 9310 +1629 9311 +943 9312 +marc 9313 +luo 9314 +樨 9315 +848 9316 +county 9317 +944 9318 +tb 9319 +dts 9320 +junior 9321 +vba 9322 +lot 9323 +傕 9324 +玕 9325 +毎 9326 +direct 9327 +839 9328 +繸 9329 +2350 9330 +774 9331 +劵 9332 +fsh 9333 +wmv 9334 +镧 9335 +秫 9336 +1094 9337 +osi 9338 +1602 9339 +邶 9340 +猞 9341 +dior 9342 +1766 9343 +1623 9344 +廛 9345 +栌 9346 +钲 9347 +镦 9348 +1607 9349 +psa 9350 +spss 9351 +xy 9352 +1769 9353 +cells 9354 +1465 9355 +1577 9356 +gon 9357 +send 9358 +vision 9359 +thinking 9360 +imf 9361 +嘏 9362 +carl 9363 +蝰 9364 +32000 9365 +bay 9366 +928 9367 +is09001 9368 +镏 9369 +20kg 9370 +淠 9371 +imax 9372 +novel 9373 +qt 9374 +1684 9375 +荇 9376 +逄 9377 +au 9378 +author 9379 +mod 9380 +80mm 9381 +1748 9382 +849 9383 +1612 9384 +yet 9385 +嘅 9386 +929 9387 +6l 9388 +karl 9389 +6100 9390 +students 9391 +gmat 9392 +myself 9393 +kate 9394 +jpg 9395 +979 9396 +1752 9397 +829 9398 +2450 9399 +914 9400 +876 9401 +祕 9402 +瑠 9403 +48h 9404 +mpv 9405 +1734 9406 +mis 9407 +1565 9408 +walk 9409 +941 9410 +1075 9411 +1235 9412 +natural 9413 +k2 9414 +977 9415 +炝 9416 +杪 9417 +4050 9418 +1669 9419 +p3 9420 +1004 9421 +fn 9422 +埴 9423 +1555 9424 +vmware 9425 +chloride 9426 +942 9427 +steven 9428 +1078 9429 +獬 9430 +966 9431 +1135 9432 +country 9433 +947 9434 +柢 9435 +捱 9436 +跣 9437 +887 9438 +涑 9439 +75mm 9440 +1278 9441 +1583 9442 +western 9443 +watch 9444 +撃 9445 +伢 9446 +堠 9447 +1045 9448 +12m 9449 +museum 9450 +1215 9451 +document 9452 +marketing 9453 +952 9454 +卽 9455 +猁 9456 +usb3 9457 +906 9458 +厣 9459 +physical 9460 +辏 9461 +1668 9462 +旆 9463 +agp 9464 +茆 9465 +1488 9466 +pg 9467 +乜 9468 +deep 9469 +1082 9470 +961 9471 +踯 9472 +1526 9473 +# 9474 +[ 9475 +yam 9476 +lofter 9477 +##s 9478 +##0 9479 +##a 9480 +##2 9481 +##1 9482 +##3 9483 +##e 9484 +##8 9485 +##5 9486 +##6 9487 +##4 9488 +##9 9489 +##7 9490 +##t 9491 +##o 9492 +##d 9493 +##i 9494 +##n 9495 +##m 9496 +##c 9497 +##l 9498 +##y 9499 +##r 9500 +##g 9501 +##p 9502 +##f 9503 +pixnet 9504 +cookies 9505 +tripadvisor 9506 +##er 9507 +##k 9508 +##h 9509 +##b 9510 +##x 9511 +##u 9512 +##w 9513 +##ing 9514 +ctrip 9515 +##on 9516 +##v 9517 +llc 9518 +##an 9519 +##z 9520 +blogthis 9521 +##le 9522 +##in 9523 +##mm 9524 +##00 9525 +ig 9526 +##ng 9527 +##us 9528 +##te 9529 +##ed 9530 +ncc 9531 +blog 9532 +##10 9533 +##al 9534 +##ic 9535 +##ia 9536 +##q 9537 +##ce 9538 +##en 9539 +##is 9540 +##ra 9541 +##es 9542 +##j 9543 +##cm 9544 +tw 9545 +##ne 9546 +##re 9547 +##tion 9548 +pony 9549 +##2017 9550 +##ch 9551 +##or 9552 +##na 9553 +cafe 9554 +pinterest 9555 +pixstyleme3c 9556 +##ta 9557 +##2016 9558 +##ll 9559 +##20 9560 +##ie 9561 +##ma 9562 +##17 9563 +##ion 9564 +##th 9565 +##st 9566 +##se 9567 +##et 9568 +##ck 9569 +##ly 9570 +web885 9571 +##ge 9572 +xd 9573 +##ry 9574 +##11 9575 +0fork 9576 +##12 9577 +##ter 9578 +##ar 9579 +##la 9580 +##os 9581 +##30 9582 +##el 9583 +##50 9584 +##ml 9585 +tue 9586 +posted 9587 +##at 9588 +##man 9589 +##15 9590 +ago 9591 +##it 9592 +##me 9593 +##de 9594 +##nt 9595 +##mb 9596 +##16 9597 +##ve 9598 +##da 9599 +##ps 9600 +##to 9601 +https 9602 +momo 9603 +##son 9604 +##ke 9605 +##80 9606 +ebd 9607 +apk 9608 +##88 9609 +##um 9610 +wiki 9611 +brake 9612 +mon 9613 +po 9614 +june 9615 +##ss 9616 +fb 9617 +##as 9618 +leonardo 9619 +safari 9620 +##60 9621 +wed 9622 +win7 9623 +kiehl 9624 +##co 9625 +##go 9626 +vfm 9627 +kanye 9628 +##90 9629 +##2015 9630 +##id 9631 +##ey 9632 +##sa 9633 +##ro 9634 +##am 9635 +##no 9636 +thu 9637 +fri 9638 +##sh 9639 +##ki 9640 +comments 9641 +##pe 9642 +##ine 9643 +uber 9644 +##mi 9645 +##ton 9646 +wordpress 9647 +##ment 9648 +win10 9649 +##ld 9650 +##li 9651 +gmail 9652 +##rs 9653 +##ri 9654 +##rd 9655 +##21 9656 +##io 9657 +##99 9658 +paypal 9659 +policy 9660 +##40 9661 +##ty 9662 +##18 9663 +##01 9664 +##ba 9665 +taiwan 9666 +##ga 9667 +privacy 9668 +agoda 9669 +##13 9670 +##ny 9671 +##24 9672 +##22 9673 +##by 9674 +##ur 9675 +##hz 9676 +##ang 9677 +cookie 9678 +netscape 9679 +##ka 9680 +##ad 9681 +nike 9682 +survey 9683 +##016 9684 +wikia 9685 +##32 9686 +##017 9687 +cbc 9688 +##tor 9689 +##kg 9690 +##rt 9691 +##14 9692 +campaign 9693 +##ct 9694 +##ts 9695 +##ns 9696 +##ao 9697 +##nd 9698 +##70 9699 +##ya 9700 +##il 9701 +##25 9702 +0020 9703 +897 9704 +##23 9705 +hotels 9706 +##ian 9707 +6606 9708 +##ers 9709 +##26 9710 +##day 9711 +##ay 9712 +##line 9713 +##be 9714 +talk2yam 9715 +yamservice 9716 +coco 9717 +##dy 9718 +##ies 9719 +##ha 9720 +instagram 9721 +##ot 9722 +##va 9723 +##mo 9724 +##land 9725 +ltxsw 9726 +##ation 9727 +##pa 9728 +##ol 9729 +tag 9730 +##ue 9731 +##31 9732 +oppo 9733 +##ca 9734 +##om 9735 +chrome 9736 +##ure 9737 +lol 9738 +##19 9739 +##bo 9740 +##100 9741 +##way 9742 +##ko 9743 +##do 9744 +##un 9745 +##ni 9746 +herme 9747 +##28 9748 +##up 9749 +##06 9750 +##ds 9751 +admin 9752 +##48 9753 +##015 9754 +##35 9755 +##ee 9756 +tpp 9757 +##ive 9758 +##cc 9759 +##ble 9760 +##ity 9761 +##ex 9762 +##ler 9763 +##ap 9764 +##book 9765 +##ice 9766 +##km 9767 +##mg 9768 +##ms 9769 +ebay 9770 +##29 9771 +ubuntu 9772 +##cy 9773 +##view 9774 +##lo 9775 +##oo 9776 +##02 9777 +step1 9778 +july 9779 +##net 9780 +##ls 9781 +##ii 9782 +##05 9783 +##33 9784 +step2 9785 +ios9 9786 +##box 9787 +##ley 9788 +samsung 9789 +pokemon 9790 +##ent 9791 +##les 9792 +s8 9793 +atom 9794 +##said 9795 +##55 9796 +##2014 9797 +##66 9798 +adidas 9799 +amazon 9800 +##ber 9801 +##ner 9802 +visa 9803 +##77 9804 +##der 9805 +connectivity 9806 +##hi 9807 +firefox 9808 +skip 9809 +##27 9810 +##ir 9811 +##61 9812 +##ai 9813 +##ver 9814 +cafe2017 9815 +##ron 9816 +##ster 9817 +##sk 9818 +##ft 9819 +longchamp 9820 +ssd 9821 +##ti 9822 +reply 9823 +##my 9824 +apr 9825 +##ker 9826 +source 9827 +##one 9828 +##2013 9829 +##ow 9830 +goods 9831 +##lin 9832 +##ip 9833 +##ics 9834 +##45 9835 +##03 9836 +##ff 9837 +##47 9838 +ganji 9839 +##nce 9840 +##per 9841 +faq 9842 +comment 9843 +##ock 9844 +##bs 9845 +##ah 9846 +##lv 9847 +##mp 9848 +##000 9849 +melody 9850 +17life 9851 +##au 9852 +##71 9853 +##04 9854 +##95 9855 +##age 9856 +tips 9857 +##68 9858 +##ting 9859 +##ung 9860 +wonderland 9861 +##ction 9862 +mar 9863 +article 9864 +##db 9865 +##07 9866 +##ore 9867 +##op 9868 +##78 9869 +##38 9870 +##ong 9871 +##73 9872 +##08 9873 +##ica 9874 +##36 9875 +##wa 9876 +##64 9877 +homemesh 9878 +##85 9879 +##tv 9880 +##di 9881 +macbook 9882 +##ier 9883 +##si 9884 +##75 9885 +##ok 9886 +goris 9887 +lock 9888 +##ut 9889 +carol 9890 +##vi 9891 +##ac 9892 +anti 9893 +jan 9894 +tags 9895 +##98 9896 +##51 9897 +august 9898 +##86 9899 +##fs 9900 +##sion 9901 +jordan 9902 +##tt 9903 +##lt 9904 +##42 9905 +##bc 9906 +vivi 9907 +##rry 9908 +##ted 9909 +##rn 9910 +usd 9911 +##t00 9912 +##58 9913 +##09 9914 +##34 9915 +goo 9916 +##ui 9917 +##ary 9918 +item 9919 +##pm 9920 +##41 9921 +##za 9922 +##2012 9923 +blogabstract 9924 +##ger 9925 +##62 9926 +##44 9927 +gr2 9928 +asus 9929 +cindy 9930 +##hd 9931 +esc 9932 +##od 9933 +booking 9934 +##53 9935 +fed 9936 +##81 9937 +##ina 9938 +chan 9939 +distribution 9940 +steam 9941 +pk10 9942 +##ix 9943 +##65 9944 +##91 9945 +dec 9946 +##ana 9947 +icecat 9948 +00z 9949 +##46 9950 +##ji 9951 +##ard 9952 +oct 9953 +##ain 9954 +jp 9955 +##ze 9956 +##bi 9957 +cio 9958 +##56 9959 +h5 9960 +##39 9961 +##port 9962 +curve 9963 +##nm 9964 +##dia 9965 +utc 9966 +12345678910 9967 +##52 9968 +chanel 9969 +##and 9970 +##im 9971 +##63 9972 +vera 9973 +vivo 9974 +##ei 9975 +2756 9976 +##69 9977 +msci 9978 +##po 9979 +##89 9980 +##bit 9981 +##out 9982 +##zz 9983 +##97 9984 +##67 9985 +opec 9986 +##96 9987 +##tes 9988 +##ast 9989 +##ling 9990 +##ory 9991 +##ical 9992 +kitty 9993 +##43 9994 +step3 9995 +##cn 9996 +win8 9997 +iphone7 9998 +beauty 9999 +##87 10000 +dollars 10001 +##ys 10002 +##oc 10003 +pay 10004 +##2011 10005 +##lly 10006 +##ks 10007 +download 10008 +sep 10009 +##board 10010 +##37 10011 +##lan 10012 +winrar 10013 +##que 10014 +##ua 10015 +##com 10016 +ettoday 10017 +##54 10018 +##ren 10019 +##via 10020 +##72 10021 +##79 10022 +##tch 10023 +##49 10024 +##ial 10025 +##nn 10026 +step4 10027 +2765 10028 +gov 10029 +##xx 10030 +mandy 10031 +##ser 10032 +copyright 10033 +fashion 10034 +##ist 10035 +##art 10036 +##lm 10037 +##ek 10038 +##ning 10039 +##if 10040 +##ite 10041 +iot 10042 +##84 10043 +##2010 10044 +##ku 10045 +october 10046 +##ux 10047 +trump 10048 +##hs 10049 +##ide 10050 +##ins 10051 +april 10052 +##ight 10053 +##83 10054 +protected 10055 +##fe 10056 +##ho 10057 +ofo 10058 +gomaji 10059 +march 10060 +##lla 10061 +##pp 10062 +##ec 10063 +6s 10064 +720p 10065 +##rm 10066 +##ham 10067 +##92 10068 +fandom 10069 +##ell 10070 +info 10071 +##82 10072 +sina 10073 +4066 10074 +##able 10075 +##ctor 10076 +rights 10077 +jul 10078 +##76 10079 +mall 10080 +##59 10081 +donald 10082 +sodu 10083 +##light 10084 +reserved 10085 +htm 10086 +##han 10087 +##57 10088 +##ise 10089 +##tions 10090 +##shi 10091 +doc 10092 +055 10093 +##ram 10094 +shopping 10095 +aug 10096 +##pi 10097 +##well 10098 +wam 10099 +##hu 10100 +##gb 10101 +##93 10102 +mix 10103 +##ef 10104 +##uan 10105 +bwl 10106 +##plus 10107 +##res 10108 +##ess 10109 +tea 10110 +hktvmall 10111 +##ate 10112 +##ese 10113 +feb 10114 +inn 10115 +nov 10116 +##ci 10117 +pass 10118 +##bet 10119 +##nk 10120 +coffee 10121 +airbnb 10122 +##ute 10123 +woshipm 10124 +skype 10125 +##fc 10126 +##www 10127 +##94 10128 +##ght 10129 +##gs 10130 +##ile 10131 +##wood 10132 +##uo 10133 +icon 10134 +##em 10135 +says 10136 +##king 10137 +##tive 10138 +blogger 10139 +##74 10140 +##ox 10141 +##zy 10142 +##red 10143 +##ium 10144 +##lf 10145 +nokia 10146 +claire 10147 +##ding 10148 +november 10149 +lohas 10150 +##500 10151 +##tic 10152 +##cs 10153 +##che 10154 +##ire 10155 +##gy 10156 +##ult 10157 +january 10158 +ptt 10159 +##fa 10160 +##mer 10161 +pchome 10162 +udn 10163 +##time 10164 +##tte 10165 +garden 10166 +eleven 10167 +309b 10168 +bat 10169 +##123 10170 +##tra 10171 +kindle 10172 +##ern 10173 +xperia 10174 +ces 10175 +travel 10176 +##ous 10177 +##int 10178 +edu 10179 +cho 10180 +##car 10181 +##our 10182 +##ant 10183 +rends 10184 +##jo 10185 +mastercard 10186 +##2000 10187 +kb 10188 +##min 10189 +##ino 10190 +##ris 10191 +##ud 10192 +##set 10193 +##her 10194 +##ou 10195 +taipei 10196 +##fi 10197 +##ill 10198 +aphojoy 10199 +december 10200 +meiki 10201 +##ick 10202 +tweet 10203 +##av 10204 +iphone6 10205 +##dd 10206 +views 10207 +##mark 10208 +##ash 10209 +##ome 10210 +koreanmall 10211 +##ak 10212 +q2 10213 +##200 10214 +mlb 10215 +##lle 10216 +##watch 10217 +##und 10218 +##tal 10219 +##less 10220 +4399 10221 +##rl 10222 +update 10223 +shop 10224 +##mhz 10225 +##house 10226 +##key 10227 +##001 10228 +##hy 10229 +##web 10230 +##2009 10231 +##gg 10232 +##wan 10233 +##val 10234 +2021 10235 +##ons 10236 +doi 10237 +trivago 10238 +overdope 10239 +##ance 10240 +573032185 10241 +wx17house 10242 +##so 10243 +audi 10244 +##he 10245 +##rp 10246 +##ake 10247 +beach 10248 +cfa 10249 +ps4 10250 +##800 10251 +##link 10252 +##hp 10253 +ferragamo 10254 +##eng 10255 +##style 10256 +##gi 10257 +i7 10258 +##ray 10259 +##max 10260 +##pc 10261 +september 10262 +##ace 10263 +vps 10264 +february 10265 +pantos 10266 +wp 10267 +lisa 10268 +jquery 10269 +offer 10270 +##berg 10271 +##news 10272 +fks 10273 +##all 10274 +##rus 10275 +##888 10276 +##works 10277 +blogtitle 10278 +loftpermalink 10279 +ling 10280 +##ja 10281 +outlet 10282 +##ea 10283 +##top 10284 +##ness 10285 +salvatore 10286 +##lu 10287 +swift 10288 +##ul 10289 +week 10290 +##ean 10291 +##300 10292 +##gle 10293 +##back 10294 +powered 10295 +##tan 10296 +##nes 10297 +canon 10298 +##zi 10299 +##las 10300 +##oe 10301 +##sd 10302 +##bot 10303 +##world 10304 +##zo 10305 +top100 10306 +pmi 10307 +##vr 10308 +ball 10309 +vogue 10310 +ofweek 10311 +##list 10312 +##ort 10313 +##lon 10314 +##tc 10315 +##of 10316 +##bus 10317 +##gen 10318 +nas 10319 +##lie 10320 +##ria 10321 +##coin 10322 +##bt 10323 +nata 10324 +vive 10325 +cup 10326 +##ook 10327 +##sy 10328 +msg 10329 +3ce 10330 +##word 10331 +ebooks 10332 +r8 10333 +nice 10334 +months 10335 +rewards 10336 +##ther 10337 +0800 10338 +##xi 10339 +##sc 10340 +gg 10341 +blogfp 10342 +daily 10343 +##bb 10344 +##tar 10345 +##ky 10346 +anthony 10347 +##yo 10348 +##ara 10349 +##aa 10350 +##rc 10351 +##tz 10352 +##ston 10353 +gear 10354 +##eo 10355 +##ade 10356 +##win 10357 +##ura 10358 +##den 10359 +##ita 10360 +##sm 10361 +png 10362 +rakuten 10363 +whatsapp 10364 +##use 10365 +pad 10366 +gucci 10367 +##ode 10368 +##fo 10369 +chicago 10370 +##hone 10371 +io 10372 +sogo 10373 +be2 10374 +##ology 10375 +cloud 10376 +##con 10377 +##ford 10378 +##joy 10379 +##kb 10380 +##rade 10381 +##ach 10382 +docker 10383 +##ful 10384 +##ase 10385 +ford 10386 +##star 10387 +edited 10388 +##are 10389 +##mc 10390 +siri 10391 +##ella 10392 +bloomberg 10393 +##read 10394 +pizza 10395 +##ison 10396 +##vm 10397 +node 10398 +18k 10399 +##play 10400 +##cer 10401 +##yu 10402 +##ings 10403 +asr 10404 +##lia 10405 +step5 10406 +##cd 10407 +pixstyleme 10408 +##600 10409 +##tus 10410 +tokyo 10411 +##rial 10412 +##life 10413 +##ae 10414 +tcs 10415 +##rk 10416 +##wang 10417 +##sp 10418 +##ving 10419 +premium 10420 +netflix 10421 +##lton 10422 +##ple 10423 +##cal 10424 +021 10425 +##sen 10426 +##ville 10427 +nexus 10428 +##ius 10429 +##mah 10430 +tila 10431 +##tin 10432 +resort 10433 +##ws 10434 +p10 10435 +report 10436 +##360 10437 +##ru 10438 +bus 10439 +vans 10440 +##est 10441 +links 10442 +rebecca 10443 +##dm 10444 +azure 10445 +##365 10446 +##mon 10447 +moto 10448 +##eam 10449 +blogspot 10450 +##ments 10451 +##ik 10452 +##kw 10453 +##bin 10454 +##ata 10455 +##vin 10456 +##tu 10457 +##ula 10458 +station 10459 +##ature 10460 +files 10461 +zara 10462 +hdr 10463 +top10 10464 +s6 10465 +marriott 10466 +avira 10467 +tab 10468 +##ran 10469 +##home 10470 +oculus 10471 +##ral 10472 +rosie 10473 +##force 10474 +##ini 10475 +ice 10476 +##bert 10477 +##nder 10478 +##mber 10479 +plurk 10480 +##sis 10481 +00kg 10482 +##ence 10483 +##nc 10484 +##name 10485 +log 10486 +ikea 10487 +malaysia 10488 +##ncy 10489 +##nie 10490 +##ye 10491 +##oid 10492 +##chi 10493 +xuehai 10494 +##1000 10495 +##orm 10496 +##rf 10497 +##ware 10498 +##pro 10499 +##era 10500 +##ub 10501 +##2008 10502 +8891 10503 +scp 10504 +##zen 10505 +qvod 10506 +jcb 10507 +##hr 10508 +weibo 10509 +##row 10510 +##ish 10511 +github 10512 +mate 10513 +##lot 10514 +##ane 10515 +##tina 10516 +ed2k 10517 +##vel 10518 +##900 10519 +final 10520 +ns 10521 +bytes 10522 +##ene 10523 +##cker 10524 +##2007 10525 +##px 10526 +topapp 10527 +helpapp 10528 +14k 10529 +g4g 10530 +ldquo 10531 +##fork 10532 +##gan 10533 +##zon 10534 +##qq 10535 +##google 10536 +##ism 10537 +##zer 10538 +toyota 10539 +category 10540 +##labels 10541 +restaurant 10542 +##md 10543 +posts 10544 +##ico 10545 +angelababy 10546 +123456 10547 +sports 10548 +candy 10549 +##new 10550 +##here 10551 +swissinfo 10552 +dram 10553 +##ual 10554 +##vice 10555 +##wer 10556 +sport 10557 +q1 10558 +ios10 10559 +##mll 10560 +wan 10561 +##uk 10562 +x3 10563 +0t 10564 +##ming 10565 +e5 10566 +##3d 10567 +h7n9 10568 +worldcat 10569 +##vo 10570 +##led 10571 +##580 10572 +##ax 10573 +##ert 10574 +polo 10575 +##lr 10576 +##hing 10577 +##chat 10578 +##ule 10579 +hotmail 10580 +##pad 10581 +bbq 10582 +##ring 10583 +wali 10584 +2k 10585 +costco 10586 +switch 10587 +##city 10588 +philips 10589 +##mann 10590 +panasonic 10591 +##cl 10592 +##vd 10593 +##ping 10594 +##rge 10595 +##lk 10596 +css3 10597 +##ney 10598 +##ular 10599 +##400 10600 +##tter 10601 +lz 10602 +##tm 10603 +##yan 10604 +##let 10605 +coach 10606 +##pt 10607 +a8 10608 +follow 10609 +##berry 10610 +##ew 10611 +##wn 10612 +##og 10613 +##code 10614 +##rid 10615 +villa 10616 +git 10617 +r11 10618 +##cket 10619 +error 10620 +##anonymoussaid 10621 +##ag 10622 +##ame 10623 +##gc 10624 +qa 10625 +##lis 10626 +##gin 10627 +vmalife 10628 +##cher 10629 +wedding 10630 +##tis 10631 +demo 10632 +bye 10633 +##rant 10634 +orz 10635 +acer 10636 +##ats 10637 +##ven 10638 +macd 10639 +yougou 10640 +##dn 10641 +##ano 10642 +##urt 10643 +##rent 10644 +continue 10645 +script 10646 +##wen 10647 +##ect 10648 +paper 10649 +##chel 10650 +##cat 10651 +x5 10652 +fox 10653 +##blog 10654 +loading 10655 +##yn 10656 +##tp 10657 +kuso 10658 +799 10659 +vdc 10660 +forest 10661 +prime 10662 +ultra 10663 +##rmb 10664 +square 10665 +##field 10666 +##reen 10667 +##ors 10668 +##ju 10669 +##air 10670 +##map 10671 +cdn 10672 +##wo 10673 +m8 10674 +##get 10675 +opera 10676 +##base 10677 +##ood 10678 +vsa 10679 +##aw 10680 +##ail 10681 +count 10682 +##een 10683 +##gp 10684 +vsc 10685 +tree 10686 +##eg 10687 +##ose 10688 +##ories 10689 +##shop 10690 +alphago 10691 +v4 10692 +fluke62max 10693 +zip 10694 +##sta 10695 +bas 10696 +##yer 10697 +hadoop 10698 +##ube 10699 +##wi 10700 +0755 10701 +hola 10702 +##low 10703 +centre 10704 +##fer 10705 +##750 10706 +##media 10707 +##san 10708 +##bank 10709 +q3 10710 +##nge 10711 +##mail 10712 +##lp 10713 +client 10714 +event 10715 +vincent 10716 +##nse 10717 +sui 10718 +adchoice 10719 +##stry 10720 +##zone 10721 +ga 10722 +apps 10723 +##ab 10724 +##rner 10725 +kymco 10726 +##care 10727 +##pu 10728 +##yi 10729 +minkoff 10730 +annie 10731 +collection 10732 +kpi 10733 +playstation 10734 +bh 10735 +##bar 10736 +armani 10737 +##xy 10738 +iherb 10739 +##ery 10740 +##share 10741 +##ob 10742 +volvo 10743 +##ball 10744 +##hk 10745 +##cp 10746 +##rie 10747 +##ona 10748 +##sl 10749 +gtx 10750 +rdquo 10751 +jayz 10752 +##lex 10753 +##rum 10754 +namespace 10755 +##ale 10756 +##atic 10757 +##erson 10758 +##ql 10759 +##ves 10760 +##type 10761 +enter 10762 +##168 10763 +##mix 10764 +##bian 10765 +a9 10766 +ky 10767 +##lc 10768 +movie 10769 +##hc 10770 +tower 10771 +##ration 10772 +##mit 10773 +##nch 10774 +ua 10775 +tel 10776 +prefix 10777 +##o2 10778 +##point 10779 +ott 10780 +##http 10781 +##ury 10782 +baidu 10783 +##ink 10784 +member 10785 +##logy 10786 +bigbang 10787 +nownews 10788 +##js 10789 +##shot 10790 +##tb 10791 +eba 10792 +##tics 10793 +##lus 10794 +spark 10795 +##ama 10796 +##ions 10797 +##lls 10798 +##down 10799 +##ress 10800 +burberry 10801 +day2 10802 +##kv 10803 +related 10804 +edit 10805 +##ark 10806 +cx 10807 +32gb 10808 +g9 10809 +##ans 10810 +##tty 10811 +s5 10812 +##bee 10813 +thread 10814 +xr 10815 +buy 10816 +spotify 10817 +##ari 10818 +##verse 10819 +7headlines 10820 +nego 10821 +sunny 10822 +dom 10823 +positioning 10824 +fit 10825 +##tton 10826 +alexa 10827 +##ties 10828 +##llow 10829 +amy 10830 +##du 10831 +##rth 10832 +##lar 10833 +2345 10834 +##des 10835 +sidebar 10836 +site 10837 +##cky 10838 +##kit 10839 +##ime 10840 +##009 10841 +season 10842 +##fun 10843 +gogoro 10844 +a7 10845 +lily 10846 +twd600 10847 +##vis 10848 +##cture 10849 +friday 10850 +yi 10851 +##tta 10852 +##tel 10853 +##lock 10854 +economy 10855 +tinker 10856 +8gb 10857 +##app 10858 +oops 10859 +##right 10860 +edm 10861 +##cent 10862 +supreme 10863 +##its 10864 +##asia 10865 +dropbox 10866 +##tti 10867 +books 10868 +##tle 10869 +##ller 10870 +##ken 10871 +##more 10872 +##boy 10873 +sex 10874 +##dom 10875 +##ider 10876 +##unch 10877 +##put 10878 +##gh 10879 +ka 10880 +amoled 10881 +div 10882 +##tr 10883 +##n1 10884 +port 10885 +howard 10886 +##tags 10887 +ken 10888 +##nus 10889 +adsense 10890 +buff 10891 +thunder 10892 +##town 10893 +##ique 10894 +##body 10895 +pin 10896 +##erry 10897 +tee 10898 +##the 10899 +##013 10900 +udnbkk 10901 +16gb 10902 +##mic 10903 +miui 10904 +##tro 10905 +##alk 10906 +##nity 10907 +s4 10908 +##oa 10909 +docomo 10910 +##tf 10911 +##ack 10912 +fc2 10913 +##ded 10914 +##sco 10915 +##014 10916 +##rite 10917 +linkedin 10918 +##ada 10919 +##now 10920 +##ndy 10921 +ucbug 10922 +sputniknews 10923 +legalminer 10924 +##ika 10925 +##xp 10926 +##bu 10927 +q10 10928 +##rman 10929 +cheese 10930 +ming 10931 +maker 10932 +##gm 10933 +nikon 10934 +##fig 10935 +ppi 10936 +jchere 10937 +ted 10938 +fgo 10939 +tech 10940 +##tto 10941 +##gl 10942 +##len 10943 +hair 10944 +img 10945 +##pper 10946 +##a1 10947 +acca 10948 +##ition 10949 +##ference 10950 +suite 10951 +##ig 10952 +##mond 10953 +##cation 10954 +##pr 10955 +101vip 10956 +##999 10957 +64gb 10958 +airport 10959 +##over 10960 +##ith 10961 +##su 10962 +town 10963 +piece 10964 +##llo 10965 +no1 10966 +##qi 10967 +focus 10968 +reader 10969 +##admin 10970 +##ora 10971 +false 10972 +##log 10973 +##ces 10974 +##ume 10975 +motel 10976 +##oper 10977 +flickr 10978 +netcomponents 10979 +##af 10980 +pose 10981 +##ound 10982 +##cg 10983 +##site 10984 +##iko 10985 +con 10986 +##ath 10987 +##hip 10988 +##rey 10989 +cream 10990 +##cks 10991 +012 10992 +##dp 10993 +facebooktwitterpinterestgoogle 10994 +sso 10995 +shtml 10996 +swiss 10997 +##mw 10998 +lumia 10999 +xdd 11000 +tiffany 11001 +insee 11002 +russell 11003 +dell 11004 +##ations 11005 +camera 11006 +##vs 11007 +##flow 11008 +##late 11009 +classic 11010 +##nter 11011 +##ever 11012 +##lab 11013 +##nger 11014 +qe 11015 +##cing 11016 +editor 11017 +##nap 11018 +sunday 11019 +##ens 11020 +##700 11021 +##bra 11022 +acg 11023 +sofascore 11024 +mkv 11025 +##ign 11026 +jonathan 11027 +build 11028 +labels 11029 +##oto 11030 +tesla 11031 +moba 11032 +gohappy 11033 +ajax 11034 +##test 11035 +##urs 11036 +wps 11037 +fedora 11038 +##ich 11039 +mozilla 11040 +##480 11041 +##dr 11042 +urn 11043 +##lina 11044 +grace 11045 +##die 11046 +##try 11047 +##ader 11048 +elle 11049 +##chen 11050 +price 11051 +##ten 11052 +uhz 11053 +##ough 11054 +##hen 11055 +states 11056 +push 11057 +session 11058 +balance 11059 +wow 11060 +##cus 11061 +##py 11062 +##ward 11063 +##ep 11064 +34e 11065 +wong 11066 +prada 11067 +##cle 11068 +##ree 11069 +q4 11070 +##ctive 11071 +##ool 11072 +##ira 11073 +##163 11074 +rq 11075 +buffet 11076 +e6 11077 +##ez 11078 +##card 11079 +##cha 11080 +day3 11081 +eye 11082 +##end 11083 +adi 11084 +tvbs 11085 +##ala 11086 +nova 11087 +##tail 11088 +##ries 11089 +##ved 11090 +base 11091 +##ways 11092 +hero 11093 +hgih 11094 +profile 11095 +fish 11096 +mu 11097 +ssh 11098 +##wd 11099 +click 11100 +cake 11101 +##ond 11102 +pre 11103 +##tom 11104 +kic 11105 +pixel 11106 +##ov 11107 +##fl 11108 +product 11109 +6a 11110 +##pd 11111 +dear 11112 +##gate 11113 +yumi 11114 +##sky 11115 +bin 11116 +##ture 11117 +##ape 11118 +isis 11119 +nand 11120 +##101 11121 +##load 11122 +##ream 11123 +a6 11124 +##post 11125 +##we 11126 +zenfone 11127 +##ike 11128 +gd 11129 +forum 11130 +jessica 11131 +##ould 11132 +##ious 11133 +lohasthree 11134 +##gar 11135 +##ggle 11136 +##ric 11137 +##own 11138 +eclipse 11139 +##side 11140 +061 11141 +##other 11142 +##tech 11143 +##ator 11144 +engine 11145 +##ged 11146 +plaza 11147 +##fit 11148 +westbrook 11149 +reuters 11150 +##ily 11151 +contextlink 11152 +##hn 11153 +##cil 11154 +##cel 11155 +cambridge 11156 +##ize 11157 +##aid 11158 +##data 11159 +frm 11160 +##head 11161 +butler 11162 +##sun 11163 +##mar 11164 +puma 11165 +pmid 11166 +kitchen 11167 +##lic 11168 +day1 11169 +##text 11170 +##page 11171 +##rris 11172 +pm1 11173 +##ket 11174 +trackback 11175 +##hai 11176 +display 11177 +##hl 11178 +idea 11179 +##sent 11180 +airmail 11181 +##ug 11182 +##men 11183 +028 11184 +##lution 11185 +schemas 11186 +asics 11187 +wikipedia 11188 +##tional 11189 +##vy 11190 +##dget 11191 +##ein 11192 +contact 11193 +pepper 11194 +##uel 11195 +##ument 11196 +##hang 11197 +q5 11198 +##sue 11199 +##ndi 11200 +swatch 11201 +##cept 11202 +popular 11203 +##ste 11204 +##tag 11205 +trc 11206 +##west 11207 +##live 11208 +honda 11209 +ping 11210 +messenger 11211 +##rap 11212 +v9 11213 +unity 11214 +appqq 11215 +leo 11216 +##tone 11217 +##ass 11218 +uniqlo 11219 +##010 11220 +moneydj 11221 +##tical 11222 +12306 11223 +##m2 11224 +coc 11225 +miacare 11226 +##mn 11227 +tmt 11228 +##core 11229 +vim 11230 +kk 11231 +##may 11232 +target 11233 +##2c 11234 +##ope 11235 +omega 11236 +pinkoi 11237 +##rain 11238 +##ement 11239 +p9 11240 +rd 11241 +##tier 11242 +##vic 11243 +zone 11244 +isofix 11245 +cpa 11246 +kimi 11247 +##lay 11248 +lulu 11249 +##uck 11250 +050 11251 +weeks 11252 +##hop 11253 +##ear 11254 +eia 11255 +##fly 11256 +korea 11257 +boost 11258 +##ship 11259 +eur 11260 +valley 11261 +##iel 11262 +##ude 11263 +rn 11264 +##ena 11265 +feed 11266 +5757 11267 +qqmei 11268 +##thing 11269 +aws 11270 +pink 11271 +##ters 11272 +##kin 11273 +board 11274 +##vertisement 11275 +wine 11276 +##ien 11277 +##dge 11278 +##tant 11279 +##twitter 11280 +##3c 11281 +cool1 11282 +##012 11283 +##150 11284 +##fu 11285 +##iner 11286 +googlemsn 11287 +pixnetfacebookyahoo 11288 +x7 11289 +##uce 11290 +sao 11291 +##ev 11292 +##file 11293 +9678 11294 +xddd 11295 +shirt 11296 +##rio 11297 +##hat 11298 +givenchy 11299 +bang 11300 +##lio 11301 +monday 11302 +##abc 11303 +ubuntuforumwikilinuxpastechat 11304 +##vc 11305 +##rity 11306 +7866 11307 +##ost 11308 +imsean 11309 +tiger 11310 +##fet 11311 +dji 11312 +##come 11313 +##beth 11314 +##aft 11315 +##don 11316 +3p 11317 +emma 11318 +##khz 11319 +x6 11320 +##face 11321 +pptv 11322 +x4 11323 +##mate 11324 +sophie 11325 +##jing 11326 +fifa 11327 +##mand 11328 +sale 11329 +inwedding 11330 +##gn 11331 +##mmy 11332 +##pmlast 11333 +nana 11334 +##wu 11335 +note7 11336 +##340 11337 +##bel 11338 +window 11339 +##dio 11340 +##ht 11341 +##ivity 11342 +domain 11343 +neo 11344 +##isa 11345 +##lter 11346 +5k 11347 +f5 11348 +##cts 11349 +ft 11350 +zol 11351 +##act 11352 +mwc 11353 +nbapop 11354 +eds 11355 +##room 11356 +previous 11357 +tomtom 11358 +##ets 11359 +5t 11360 +chi 11361 +##hg 11362 +fairmont 11363 +gay 11364 +1b 11365 +##raph 11366 +##ils 11367 +i3 11368 +avenue 11369 +##host 11370 +##bon 11371 +##tsu 11372 +message 11373 +navigation 11374 +fintech 11375 +h6 11376 +##ject 11377 +##vas 11378 +##firm 11379 +credit 11380 +##wf 11381 +xxxx 11382 +##nor 11383 +##space 11384 +huawei 11385 +plan 11386 +json 11387 +sbl 11388 +##dc 11389 +wish 11390 +##120 11391 +##sol 11392 +windows7 11393 +washington 11394 +##nsis 11395 +lo 11396 +##sio 11397 +##ym 11398 +##bor 11399 +planet 11400 +##wt 11401 +gpa 11402 +##tw 11403 +##oka 11404 +connect 11405 +##rss 11406 +##work 11407 +##atus 11408 +chicken 11409 +##times 11410 +fa 11411 +##ather 11412 +##cord 11413 +009 11414 +##eep 11415 +hitachi 11416 +##pan 11417 +disney 11418 +##press 11419 +wind 11420 +frigidaire 11421 +##tl 11422 +hsu 11423 +##ull 11424 +expedia 11425 +archives 11426 +##wei 11427 +cut 11428 +ins 11429 +6gb 11430 +brand 11431 +cf1 11432 +##rip 11433 +##nis 11434 +128gb 11435 +3t 11436 +##oon 11437 +quick 11438 +15058 11439 +wing 11440 +##bug 11441 +##cms 11442 +##dar 11443 +##oh 11444 +zoom 11445 +trip 11446 +##nba 11447 +rcep 11448 +aspx 11449 +080 11450 +gnu 11451 +##count 11452 +##url 11453 +##ging 11454 +8591 11455 +am09 11456 +shadow 11457 +##cia 11458 +emily 11459 +##tation 11460 +host 11461 +ff 11462 +techorz 11463 +##mini 11464 +##mporary 11465 +##ering 11466 +##next 11467 +cma 11468 +##mbps 11469 +##gas 11470 +##ift 11471 +##dot 11472 +amana 11473 +##ros 11474 +##eet 11475 +##ible 11476 +##aka 11477 +##lor 11478 +maggie 11479 +##011 11480 +##iu 11481 +##gt 11482 +1tb 11483 +articles 11484 +##burg 11485 +##iki 11486 +database 11487 +fantasy 11488 +##rex 11489 +##cam 11490 +dlc 11491 +dean 11492 +##you 11493 +path 11494 +gaming 11495 +victoria 11496 +maps 11497 +##lee 11498 +##itor 11499 +overchicstoretvhome 11500 +##xt 11501 +##nan 11502 +x9 11503 +install 11504 +##ann 11505 +##ph 11506 +##rcle 11507 +##nic 11508 +##nar 11509 +metro 11510 +chocolate 11511 +##rian 11512 +##table 11513 +skin 11514 +##sn 11515 +mountain 11516 +##0mm 11517 +inparadise 11518 +7x24 11519 +##jia 11520 +eeworld 11521 +creative 11522 +g5 11523 +parker 11524 +ecfa 11525 +village 11526 +sylvia 11527 +hbl 11528 +##ques 11529 +##onsored 11530 +##x2 11531 +##v4 11532 +##tein 11533 +ie6 11534 +##stack 11535 +ver 11536 +##ads 11537 +##baby 11538 +bbe 11539 +##110 11540 +##lone 11541 +##uid 11542 +ads 11543 +022 11544 +gundam 11545 +006 11546 +scrum 11547 +match 11548 +##ave 11549 +##470 11550 +##oy 11551 +##talk 11552 +glass 11553 +lamigo 11554 +##eme 11555 +##a5 11556 +wade 11557 +kde 11558 +##lace 11559 +ocean 11560 +tvg 11561 +##covery 11562 +##r3 11563 +##ners 11564 +##rea 11565 +##aine 11566 +cover 11567 +##ision 11568 +##sia 11569 +##bow 11570 +msi 11571 +##love 11572 +soft 11573 +z2 11574 +##pl 11575 +mobil 11576 +##uy 11577 +nginx 11578 +##oi 11579 +##rr 11580 +6221 11581 +##mple 11582 +##sson 11583 +##nts 11584 +91tv 11585 +comhd 11586 +crv3000 11587 +##uard 11588 +gallery 11589 +##bia 11590 +rate 11591 +spf 11592 +redis 11593 +traction 11594 +icloud 11595 +011 11596 +jose 11597 +##tory 11598 +sohu 11599 +899 11600 +kicstart2 11601 +##hia 11602 +##sit 11603 +##walk 11604 +##xure 11605 +500g 11606 +##pact 11607 +xa 11608 +carlo 11609 +##250 11610 +##walker 11611 +##can 11612 +cto 11613 +gigi 11614 +pen 11615 +##hoo 11616 +ob 11617 +##yy 11618 +13913459 11619 +##iti 11620 +mango 11621 +##bbs 11622 +sense 11623 +oxford 11624 +walker 11625 +jennifer 11626 +##ola 11627 +course 11628 +##bre 11629 +##pus 11630 +##rder 11631 +lucky 11632 +075 11633 +ivy 11634 +##nia 11635 +sotheby 11636 +##ugh 11637 +joy 11638 +##orage 11639 +##ush 11640 +##bat 11641 +##dt 11642 +r9 11643 +##2d 11644 +##gio 11645 +wear 11646 +##lax 11647 +##moon 11648 +seven 11649 +lonzo 11650 +8k 11651 +evolution 11652 +##kk 11653 +kd 11654 +arduino 11655 +##lux 11656 +arpg 11657 +##rdon 11658 +cook 11659 +##x5 11660 +five 11661 +##als 11662 +##ida 11663 +sign 11664 +##nda 11665 +##posted 11666 +fresh 11667 +##mine 11668 +##skip 11669 +##form 11670 +##ssion 11671 +##tee 11672 +dyson 11673 +stage 11674 +##jie 11675 +##night 11676 +epson 11677 +pack 11678 +##ppy 11679 +wd 11680 +##eh 11681 +##rence 11682 +##lvin 11683 +golden 11684 +discovery 11685 +##trix 11686 +##n2 11687 +loft 11688 +##uch 11689 +##dra 11690 +##sse 11691 +1mdb 11692 +welcome 11693 +##urn 11694 +gaga 11695 +##lmer 11696 +teddy 11697 +##160 11698 +##f2016 11699 +##sha 11700 +rar 11701 +holiday 11702 +074 11703 +##vg 11704 +##nos 11705 +##rail 11706 +gartner 11707 +gi 11708 +6p 11709 +##dium 11710 +kit 11711 +b3 11712 +eco 11713 +sean 11714 +##stone 11715 +nu 11716 +##np 11717 +f16 11718 +write 11719 +029 11720 +m5 11721 +##ias 11722 +##dk 11723 +fsm 11724 +52kb 11725 +##xxx 11726 +##cake 11727 +lim 11728 +ru 11729 +1v 11730 +##ification 11731 +published 11732 +angela 11733 +16g 11734 +analytics 11735 +##nel 11736 +gmt 11737 +##icon 11738 +##bby 11739 +ios11 11740 +waze 11741 +9985 11742 +##ust 11743 +##007 11744 +delete 11745 +52sykb 11746 +wwdc 11747 +027 11748 +##fw 11749 +1389 11750 +##xon 11751 +brandt 11752 +##ses 11753 +##dragon 11754 +vetements 11755 +anne 11756 +monte 11757 +official 11758 +##ere 11759 +##nne 11760 +##oud 11761 +etnews 11762 +##a2 11763 +##graphy 11764 +##rtex 11765 +##gma 11766 +mount 11767 +archive 11768 +morning 11769 +tan 11770 +ddos 11771 +e7 11772 +day4 11773 +factory 11774 +bruce 11775 +##ito 11776 +guest 11777 +##lling 11778 +n3 11779 +mega 11780 +women 11781 +dac 11782 +church 11783 +##jun 11784 +singapore 11785 +##facebook 11786 +6991 11787 +starbucks 11788 +##tos 11789 +##stin 11790 +##shine 11791 +zen 11792 +##mu 11793 +tina 11794 +request 11795 +##gence 11796 +q7 11797 +##zzi 11798 +diary 11799 +##tore 11800 +##ead 11801 +cst 11802 +##osa 11803 +canada 11804 +va 11805 +##jiang 11806 +##lam 11807 +##nix 11808 +##sday 11809 +g6 11810 +##master 11811 +bing 11812 +##zl 11813 +nb40 11814 +thai 11815 +ln284ct 11816 +##itz 11817 +##2f 11818 +bonnie 11819 +##food 11820 +##lent 11821 +originals 11822 +##stro 11823 +##lts 11824 +##bscribe 11825 +ntd 11826 +yesstyle 11827 +hmv 11828 +##tment 11829 +d5 11830 +##pn 11831 +topios9 11832 +lifestyle 11833 +virtual 11834 +##ague 11835 +xz 11836 +##deo 11837 +muji 11838 +024 11839 +unt 11840 +##nnis 11841 +faq1 11842 +##ette 11843 +curry 11844 +##pop 11845 +release 11846 +##cast 11847 +073 11848 +##ews 11849 +5c 11850 +##stle 11851 +ios7 11852 +##ima 11853 +dog 11854 +lenovo 11855 +##r4 11856 +013 11857 +vornado 11858 +##desk 11859 +##ald 11860 +9595 11861 +##van 11862 +oil 11863 +common 11864 +##jy 11865 +##lines 11866 +g7 11867 +twice 11868 +ella 11869 +nano 11870 +belle 11871 +##mes 11872 +##self 11873 +##note 11874 +benz 11875 +##ova 11876 +##wing 11877 +kai 11878 +##hua 11879 +##rect 11880 +rainer 11881 +##unge 11882 +##0m 11883 +guestname 11884 +##uma 11885 +##kins 11886 +##zu 11887 +tokichoi 11888 +##price 11889 +##med 11890 +##mus 11891 +rmk 11892 +address 11893 +vm 11894 +openload 11895 +##group 11896 +##hin 11897 +##iginal 11898 +amg 11899 +urban 11900 +##oz 11901 +jobs 11902 +##public 11903 +##sch 11904 +##dden 11905 +##bell 11906 +hostel 11907 +##drive 11908 +##rmin 11909 +boot 11910 +##370 11911 +##fx 11912 +##nome 11913 +##ctionary 11914 +##oman 11915 +##lish 11916 +##cr 11917 +##hm 11918 +##how 11919 +francis 11920 +c919 11921 +b5 11922 +evernote 11923 +##uc 11924 +##3000 11925 +coupe 11926 +##urg 11927 +##cca 11928 +##uality 11929 +019 11930 +##ett 11931 +##ani 11932 +##tax 11933 +##rma 11934 +leonnhurt 11935 +##jin 11936 +ict 11937 +bird 11938 +notes 11939 +##dical 11940 +##lli 11941 +result 11942 +iu 11943 +ee 11944 +smap 11945 +gopro 11946 +##last 11947 +yin 11948 +pure 11949 +32g 11950 +##dan 11951 +##rame 11952 +mama 11953 +##oot 11954 +bean 11955 +##hur 11956 +2l 11957 +bella 11958 +sync 11959 +xuite 11960 +##ground 11961 +discuz 11962 +##getrelax 11963 +##ince 11964 +##bay 11965 +##5s 11966 +apt 11967 +##pass 11968 +jing 11969 +##rix 11970 +rich 11971 +niusnews 11972 +##ello 11973 +bag 11974 +##eting 11975 +##mobile 11976 +##ience 11977 +details 11978 +universal 11979 +silver 11980 +dit 11981 +private 11982 +ddd 11983 +u11 11984 +kanshu 11985 +##ified 11986 +fung 11987 +##nny 11988 +dx 11989 +##520 11990 +tai 11991 +023 11992 +##fr 11993 +##lean 11994 +##pin 11995 +##rin 11996 +ly 11997 +rick 11998 +##bility 11999 +banner 12000 +##baru 12001 +##gion 12002 +vdf 12003 +qualcomm 12004 +bear 12005 +oldid 12006 +ian 12007 +jo 12008 +##tors 12009 +population 12010 +##ernel 12011 +##mv 12012 +##bike 12013 +ww 12014 +##ager 12015 +exhibition 12016 +##del 12017 +##pods 12018 +fpx 12019 +structure 12020 +##free 12021 +##tings 12022 +kl 12023 +##rley 12024 +##copyright 12025 +##mma 12026 +orange 12027 +yoga 12028 +4l 12029 +canmake 12030 +honey 12031 +##anda 12032 +nikkie 12033 +dhl 12034 +publishing 12035 +##mall 12036 +##gnet 12037 +e88 12038 +##dog 12039 +fishbase 12040 +### 12041 +##[ 12042 +。 12043 +! 12044 +? 12045 +! 12046 +? 12047 +; 12048 +: 12049 +; 12050 +- 12051 +( 12052 +) 12053 +/ 12054 ++ 12055 +" 12056 +_ 12057 +… 12058 +~ 12059 += 12060 +' 12061 +% 12062 +& 12063 +· 12064 +* 12065 +@ 12066 +\ 12067 +] 12068 +— 12069 +~ 12070 +^ 12071 +> 12072 +丨 12073 +| 12074 +< 12075 +】 12076 +の 12077 +【 12078 +〔 12079 +〕 12080 +ー 12081 +★ 12082 +’ 12083 +$ 12084 +{ 12085 +} 12086 +‘ 12087 +[UNK] 12088 diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py new file mode 100644 index 00000000..5846878c --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py @@ -0,0 +1,377 @@ +# -*- coding:utf-8 -** +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""ERNIE""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +import json +import logging + +import paddle.fluid as fluid +import six + +from .transformer_encoder import encoder, pre_process_layer +from .transformer_encoder import gelu + + +class ErnieModel(object): + """ + ErnieModel + """ + + def __init__(self, + src_ids, + position_ids, + sentence_ids, + input_mask, + config, + weight_sharing=True, + use_fp16=False): + """ + :param src_ids: + :param position_ids: + :param sentence_ids: + :param input_mask: + :param config: + :param weight_sharing: + :param use_fp16: + """ + self._hidden_size = config.get('hidden_size', 768) + self._emb_size = config.get('emb_size', self._hidden_size) + self._n_layer = config.get('num_hidden_layers', 12) + self._n_head = config.get('num_attention_heads', 12) + self._voc_size = config.get('vocab_size', 30522) + self._max_position_seq_len = config.get('max_position_embeddings', 512) + self._param_share = config.get('param_share', "normal") + self._pre_encoder_cmd = config.get('pre_encoder_cmd', "nd") + self._preprocess_cmd = config.get('preprocess_cmd', "") + self._postprocess_cmd = config.get('postprocess_cmd', "dan") + self._epsilon = config.get('epsilon', 1e-05) + self._emb_mapping_in = config.get('emb_mapping_in', False) + self._n_layer_per_block = config.get('n_layer_per_block', 1) + + if config.has('sent_type_vocab_size'): + self._sent_types = config['sent_type_vocab_size'] + else: + self._sent_types = config.get('type_vocab_size', 2) + + self._use_sentence_id = config.get('use_sentence_id', True) + self._use_task_id = config.get('use_task_id', False) + if self._use_task_id: + self._task_types = config.get('task_type_vocab_size', 3) + self._hidden_act = config.get('hidden_act', 'gelu') + self._prepostprocess_dropout = config.get('hidden_dropout_prob', 0.1) + self._attention_dropout = config.get('attention_probs_dropout_prob', + 0.1) + self._weight_sharing = weight_sharing + + self._word_emb_name = "word_embedding" + self._pos_emb_name = "pos_embedding" + self._sent_emb_name = "sent_embedding" + self._task_emb_name = "task_embedding" + self._dtype = "float16" if use_fp16 else "float32" + self._emb_dtype = "float32" + # Initialize all weigths by truncated normal initializer, and all biases + # will be initialized by constant zero by default. + self._param_initializer = fluid.initializer.TruncatedNormal( + scale=config.get('initializer_range', 0.02)) + + self._build_model(src_ids, position_ids, sentence_ids, input_mask) + + def _build_model(self, src_ids, position_ids, sentence_ids, input_mask): + """ + :param src_ids: + :param position_ids: + :param sentence_ids: + :param input_mask: + :return: + """ + # padding id in vocabulary must be set to 0 + emb_out = fluid.layers.embedding( + input=src_ids, + dtype=self._emb_dtype, + size=[self._voc_size, self._emb_size], + param_attr=fluid.ParamAttr( + name=self._word_emb_name, initializer=self._param_initializer), + is_sparse=False) + + position_emb_out = fluid.layers.embedding( + input=position_ids, + dtype=self._emb_dtype, + size=[self._max_position_seq_len, self._emb_size], + param_attr=fluid.ParamAttr( + name=self._pos_emb_name, initializer=self._param_initializer)) + + emb_out = emb_out + position_emb_out + + if self._use_sentence_id: + sent_emb_out = fluid.layers.embedding( + sentence_ids, + dtype=self._emb_dtype, + size=[self._sent_types, self._emb_size], + param_attr=fluid.ParamAttr( + name=self._sent_emb_name, + initializer=self._param_initializer)) + + emb_out = emb_out + sent_emb_out + + emb_out = pre_process_layer( + emb_out, + self._pre_encoder_cmd, + self._prepostprocess_dropout, + name='pre_encoder', + epsilon=self._epsilon) + + if self._emb_mapping_in: + emb_out = fluid.layers.fc( + input=emb_out, + num_flatten_dims=2, + size=self._hidden_size, + param_attr=fluid.ParamAttr( + name='emb_hidden_mapping', + initializer=self._param_initializer), + bias_attr='emb_hidden_mapping_bias') + + if self._dtype == "float16": + emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype) + input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype) + self_attn_mask = fluid.layers.matmul( + x=input_mask, y=input_mask, transpose_y=True) + + self_attn_mask = fluid.layers.scale( + x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False) + n_head_self_attn_mask = fluid.layers.stack( + x=[self_attn_mask] * self._n_head, axis=1) + n_head_self_attn_mask.stop_gradient = True + + self._enc_out, self._checkpoints = encoder( + enc_input=emb_out, + attn_bias=n_head_self_attn_mask, + n_layer=self._n_layer, + n_head=self._n_head, + d_key=self._hidden_size // self._n_head, + d_value=self._hidden_size // self._n_head, + d_model=self._hidden_size, + d_inner_hid=self._hidden_size * 4, + prepostprocess_dropout=self._prepostprocess_dropout, + attention_dropout=self._attention_dropout, + relu_dropout=0, + hidden_act=self._hidden_act, + preprocess_cmd=self._preprocess_cmd, + postprocess_cmd=self._postprocess_cmd, + param_initializer=self._param_initializer, + name='encoder', + param_share=self._param_share, + epsilon=self._epsilon, + n_layer_per_block=self._n_layer_per_block) + if self._dtype == "float16": + self._enc_out = fluid.layers.cast( + x=self._enc_out, dtype=self._emb_dtype) + + def get_sequence_output(self): + """ + :return: + """ + return self._enc_out + + def get_pooled_output(self): + """Get the first feature of each sequence for classification""" + next_sent_feat = fluid.layers.slice( + input=self._enc_out, axes=[1], starts=[0], ends=[1]) + """ + if self._dtype == "float16": + next_sent_feat = fluid.layers.cast( + x=next_sent_feat, dtype=self._emb_dtype) + + next_sent_feat = fluid.layers.fc( + input=next_sent_feat, + size=self._emb_size, + param_attr=fluid.ParamAttr( + name="mask_lm_trans_fc.w_0", initializer=self._param_initializer), + bias_attr="mask_lm_trans_fc.b_0") + """ + """ + next_sent_feat = fluid.layers.fc( + input=next_sent_feat, + size=self._emb_size, + param_attr=fluid.ParamAttr( + name="mask_lm_trans_fc.w_0", initializer=self._param_initializer), + bias_attr="mask_lm_trans_fc.b_0") + + """ + next_sent_feat = fluid.layers.fc( + input=next_sent_feat, + size=self._hidden_size, + act="tanh", + param_attr=fluid.ParamAttr( + name="pooled_fc.w_0", initializer=self._param_initializer), + bias_attr="pooled_fc.b_0") + return next_sent_feat + + def get_lm_output(self, mask_label, mask_pos): + """Get the loss & accuracy for pretraining""" + mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32') + # extract the first token feature in each sentence + self.next_sent_feat = self.get_pooled_output() + reshaped_emb_out = fluid.layers.reshape( + x=self._enc_out, shape=[-1, self._hidden_size]) + # extract masked tokens' feature + mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos) + + if self._dtype == "float16": + mask_feat = fluid.layers.cast(x=mask_feat, dtype=self._emb_dtype) + + # transform: fc + if self._hidden_act == 'gelu' or self._hidden_act == 'gelu.precise': + _hidden_act = 'gelu' + elif self._hidden_act == 'gelu.approximate': + _hidden_act = None + else: + _hidden_act = self._hidden_act + mask_trans_feat = fluid.layers.fc( + input=mask_feat, + size=self._emb_size, + act=_hidden_act, + param_attr=fluid.ParamAttr( + name='mask_lm_trans_fc.w_0', + initializer=self._param_initializer), + bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0')) + if self._hidden_act == 'gelu.approximate': + mask_trans_feat = gelu(mask_trans_feat) + else: + pass + # transform: layer norm + mask_trans_feat = fluid.layers.layer_norm( + mask_trans_feat, + begin_norm_axis=len(mask_trans_feat.shape) - 1, + param_attr=fluid.ParamAttr( + name='mask_lm_trans_layer_norm_scale', + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + name='mask_lm_trans_layer_norm_bias', + initializer=fluid.initializer.Constant(1.))) + # transform: layer norm + # mask_trans_feat = pre_process_layer( + # mask_trans_feat, 'n', name='mask_lm_trans') + + mask_lm_out_bias_attr = fluid.ParamAttr( + name="mask_lm_out_fc.b_0", + initializer=fluid.initializer.Constant(value=0.0)) + if self._weight_sharing: + fc_out = fluid.layers.matmul( + x=mask_trans_feat, + y=fluid.default_main_program().global_block().var( + self._word_emb_name), + transpose_y=True) + fc_out += fluid.layers.create_parameter( + shape=[self._voc_size], + dtype=self._emb_dtype, + attr=mask_lm_out_bias_attr, + is_bias=True) + + else: + fc_out = fluid.layers.fc( + input=mask_trans_feat, + size=self._voc_size, + param_attr=fluid.ParamAttr( + name="mask_lm_out_fc.w_0", + initializer=self._param_initializer), + bias_attr=mask_lm_out_bias_attr) + + mask_lm_loss = fluid.layers.softmax_with_cross_entropy( + logits=fc_out, label=mask_label) + mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss) + + return mean_mask_lm_loss + + def get_task_output(self, task, task_labels): + """ + :param task: + :param task_labels: + :return: + """ + task_fc_out = fluid.layers.fc( + input=self.next_sent_feat, + size=task["num_labels"], + param_attr=fluid.ParamAttr( + name=task["task_name"] + "_fc.w_0", + initializer=self._param_initializer), + bias_attr=task["task_name"] + "_fc.b_0") + task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy( + logits=task_fc_out, label=task_labels, return_softmax=True) + task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels) + mean_task_loss = fluid.layers.mean(task_loss) + return mean_task_loss, task_acc + + +class ErnieConfig(object): + """parse ernie config""" + + def __init__(self, config_path): + """ + :param config_path: + """ + self._config_dict = self._parse(config_path) + + def _parse(self, config_path): + """ + :param config_path: + :return: + """ + try: + with open(config_path, 'r') as json_file: + config_dict = json.load(json_file) + except Exception: + raise IOError( + "Error in parsing Ernie model config file '%s'" % config_path) + else: + return config_dict + + def __getitem__(self, key): + """ + :param key: + :return: + """ + return self._config_dict.get(key, None) + + def has(self, key): + """ + :param key: + :return: + """ + if key in self._config_dict: + return True + return False + + def get(self, key, default_value): + """ + :param key,default_value: + :retrun: + """ + if key in self._config_dict: + return self._config_dict[key] + else: + return default_value + + def print_config(self): + """ + :return: + """ + for arg, value in sorted(six.iteritems(self._config_dict)): + logging.info('%s: %s' % (arg, value)) + logging.info('------------------------------------------------') diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py new file mode 100644 index 00000000..80f7a775 --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py @@ -0,0 +1,501 @@ +# -*- coding:utf-8 -** +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Transformer encoder.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from functools import partial + +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import numpy as np + + +def gelu(x): + """Gaussian Error Linear Unit. + + This is a smoother version of the RELU. + Original paper: https://arxiv.org/abs/1606.08415 + Args: + x: float Tensor to perform activation. + + Returns: + `x` with the GELU activation applied. + """ + cdf = 0.5 * (1.0 + fluid.layers.tanh( + (np.sqrt(2.0 / np.pi) * (x + 0.044715 * fluid.layers.pow(x, 3.0))))) + return x * cdf + + +def multi_head_attention(queries, + keys, + values, + attn_bias, + d_key, + d_value, + d_model, + n_head=1, + dropout_rate=0., + cache=None, + param_initializer=None, + name='multi_head_att'): + """ + Multi-Head Attention. Note that attn_bias is added to the logit before + computing softmax activiation to mask certain selected positions so that + they will not considered in attention weights. + """ + keys = queries if keys is None else keys + values = keys if values is None else values + if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): + raise ValueError( + "Inputs: quries, keys and values should all be 3-D tensors. but {} v.s. {} v.s. {}"\ + .format(queries.shape, keys.shape, values.shape)) + + def __compute_qkv(queries, keys, values, n_head, d_key, d_value): + """ + Add linear projection to queries, keys, and values. + """ + q = layers.fc( + input=queries, + size=d_key * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_query_fc.w_0', initializer=param_initializer), + bias_attr=name + '_query_fc.b_0') + k = layers.fc( + input=keys, + size=d_key * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_key_fc.w_0', initializer=param_initializer), + bias_attr=name + '_key_fc.b_0') + v = layers.fc( + input=values, + size=d_value * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_value_fc.w_0', initializer=param_initializer), + bias_attr=name + '_value_fc.b_0') + return q, k, v + + def __split_heads(x, n_head): + """ + Reshape the last dimension of inpunt tensor x so that it becomes two + dimensions and then transpose. Specifically, input a tensor with shape + [bs, max_sequence_length, n_head * hidden_dim] then output a tensor + with shape [bs, n_head, max_sequence_length, hidden_dim]. + """ + hidden_size = x.shape[-1] + # The value 0 in shape attr means copying the corresponding dimension + # size of the input as the output dimension size. + reshaped = layers.reshape( + x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True) + + # permuate the dimensions into: + # [batch_size, n_head, max_sequence_len, hidden_size_per_head] + return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) + + def __combine_heads(x): + """ + Transpose and then reshape the last two dimensions of inpunt tensor x + so that it becomes one dimension, which is reverse to __split_heads. + """ + if len(x.shape) == 3: return x + if len(x.shape) != 4: + raise ValueError("Input(x) should be a 4-D Tensor.") + + trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) + # The value 0 in shape attr means copying the corresponding dimension + # size of the input as the output dimension size. + return layers.reshape( + x=trans_x, + shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], + inplace=True) + + def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate): + """ + Scaled Dot-Product Attention + """ + scaled_q = layers.scale(x=q, scale=d_key**-0.5) + product = layers.matmul(x=scaled_q, y=k, transpose_y=True) + if attn_bias: + product += attn_bias + weights = layers.softmax(product) + if dropout_rate: + weights = layers.dropout( + weights, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + out = layers.matmul(weights, v) + return out + + q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) + + if cache is not None: # use cache and concat time steps + # Since the inplace reshape in __split_heads changes the shape of k and + # v, which is the cache input for next time step, reshape the cache + # input from the previous time step first. + k = cache["k"] = layers.concat( + [layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1) + v = cache["v"] = layers.concat( + [layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1) + + q = __split_heads(q, n_head) + k = __split_heads(k, n_head) + v = __split_heads(v, n_head) + + ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, + dropout_rate) + + out = __combine_heads(ctx_multiheads) + + # Project back to the model size. + proj_out = layers.fc( + input=out, + size=d_model, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_output_fc.w_0', initializer=param_initializer), + bias_attr=name + '_output_fc.b_0') + return proj_out + + +def positionwise_feed_forward(x, + d_inner_hid, + d_hid, + dropout_rate, + hidden_act, + param_initializer=None, + name='ffn'): + """ + Position-wise Feed-Forward Networks. + This module consists of two linear transformations with a ReLU activation + in between, which is applied to each position separately and identically. + """ + if hidden_act == 'gelu' or hidden_act == 'gelu.precise': + _hidden_act = 'gelu' + elif hidden_act == 'gelu.approximate': + _hidden_act = None + else: + _hidden_act = hidden_act + hidden = layers.fc( + input=x, + size=d_inner_hid, + num_flatten_dims=2, + act=_hidden_act, + param_attr=fluid.ParamAttr( + name=name + '_fc_0.w_0', initializer=param_initializer), + bias_attr=name + '_fc_0.b_0') + if hidden_act == 'gelu.approximate': + hidden = gelu(hidden) + + if dropout_rate: + hidden = layers.dropout( + hidden, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + out = layers.fc( + input=hidden, + size=d_hid, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_fc_1.w_0', initializer=param_initializer), + bias_attr=name + '_fc_1.b_0') + return out + + +def pre_post_process_layer(prev_out, + out, + process_cmd, + dropout_rate=0., + epsilon=1e-12, + name=''): + """ + Add residual connection, layer normalization and droput to the out tensor + optionally according to the value of process_cmd. + This will be used before or after multi-head attention and position-wise + feed-forward networks. + """ + for cmd in process_cmd: + if cmd == "a": # add residual connection + out = out + prev_out if prev_out else out + elif cmd == "n": # add layer normalization + out_dtype = out.dtype + if out_dtype == fluid.core.VarDesc.VarType.FP16: + out = layers.cast(x=out, dtype="float32") + out = layers.layer_norm( + out, + begin_norm_axis=len(out.shape) - 1, + param_attr=fluid.ParamAttr( + name=name + '_layer_norm_scale', + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + name=name + '_layer_norm_bias', + initializer=fluid.initializer.Constant(0.)), + epsilon=epsilon) + if out_dtype == fluid.core.VarDesc.VarType.FP16: + out = layers.cast(x=out, dtype="float16") + elif cmd == "d": # add dropout + if dropout_rate: + out = layers.dropout( + out, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + return out + + +pre_process_layer = partial(pre_post_process_layer, None) +post_process_layer = pre_post_process_layer + + +def encoder_layer( + enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd="n", + postprocess_cmd="da", + param_initializer=None, + name='', + epsilon=1e-12, +): + """The encoder layers that can be stacked to form a deep encoder. + This module consits of a multi-head (self) attention followed by + position-wise feed-forward networks and both the two components companied + with the post_process_layer to add residual connection, layer normalization + and droput. + """ + + attn_output = multi_head_attention( + enc_input, + None, + None, + attn_bias, + d_key, + d_value, + d_model, + n_head, + attention_dropout, + param_initializer=param_initializer, + name=name + '_multi_head_att') + + attn_output = post_process_layer( + enc_input, + attn_output, + postprocess_cmd, + prepostprocess_dropout, + name=name + '_post_att', + epsilon=epsilon) + + ffd_output = positionwise_feed_forward( + attn_output, + d_inner_hid, + d_model, + relu_dropout, + hidden_act, + param_initializer=param_initializer, + name=name + '_ffn') + + return post_process_layer( + attn_output, + ffd_output, + postprocess_cmd, + prepostprocess_dropout, + name=name + '_post_ffn', + epsilon=epsilon), ffd_output + + +def encoder_inner_share(enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + epsilon, + param_initializer=None, + name='', + n_layer_per_block=1): + """ + The encoder_inner_share is composed of n_layer_per_block layers returned by calling + encoder_layer. + """ + _checkpoints = [] + for i in range(n_layer_per_block): + enc_output, cp = encoder_layer( + enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + param_initializer=param_initializer, + name=name + '_layer_' + str(i), + epsilon=epsilon, + ) + _checkpoints.append(cp) + enc_input = enc_output + + return enc_output, _checkpoints + + +def encoder_outer_share(enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + epsilon, + param_initializer=None, + name='', + n_layer_per_block=1): + """ + The encoder_outer_share is composed of n_layer_per_block layers returned by calling + encoder_layer. + """ + _checkpoints = [] + for i in range(n_layer_per_block): + enc_output, cp = encoder_layer( + enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + param_initializer=param_initializer, + name=name, + epsilon=epsilon) + _checkpoints.append(cp) + enc_input = enc_output + + return enc_output, _checkpoints + + +def encoder(enc_input, + attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + epsilon, + n_layer_per_block, + param_initializer=None, + name='', + param_share=None): + """ + The encoder is composed of a stack of identical layers returned by calling + encoder_layer . + """ + checkpoints = [] + # for outer_share it will share same param in one block, + # and for inner_share it will share param across blocks, rather than in one same block + # + # outer-share inner-share + # [1] [1] ----\ 1st block + # [1] [2] ----/ + # [2] [1] ----\ 2nd block + # [2] [2] ----/ + + if param_share == "normal" or param_share == 'outer_share': + #n_layer_per_block=1, n_layer=24 for bert-large + #n_layer_per_block=1, n_layer=12 for bert-base + #n_layer_per_block=12, n_layer=12 for albert-xxlarge + #n_layer_per_block=6, n_layer=12 for albert-xxlarge-outershare + enc_fn = encoder_outer_share + name_fn = lambda i: name + '_layer_' + str(i) + elif param_share == "inner_share": + #n_layer_per_block = 2 + enc_fn = encoder_inner_share + name_fn = lambda i: name + else: + raise ValueError('unsupported param share mode') + + for i in range(n_layer // n_layer_per_block): + enc_output, cp = enc_fn( + enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + param_initializer=param_initializer, + name=name_fn(i), + n_layer_per_block=n_layer_per_block, + epsilon=epsilon, + ) + checkpoints.extend(cp) + enc_input = enc_output + enc_output = pre_process_layer( + enc_output, + preprocess_cmd, + prepostprocess_dropout, + name="post_encoder", + epsilon=epsilon) + + return enc_output, checkpoints diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py new file mode 100644 index 00000000..87187836 --- /dev/null +++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py @@ -0,0 +1,258 @@ +# coding:utf-8 +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import ast +import os + +from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor +from paddlehub import TransformerModule +from paddlehub.module.module import moduleinfo, runnable, serving +from paddlehub.reader.tokenization import convert_to_unicode, FullTokenizer +from paddlehub.reader.batching import pad_batch_data +import numpy as np + +from ernie_skep_sentiment_analysis.model.ernie import ErnieModel, ErnieConfig + + +@moduleinfo( + name="ernie_skep_sentiment_analysis", + version="1.0.0", + summary= + "SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis. Ernie_skep_sentiment_analysis module is initialize with enie_1.0_chn_large when pretraining. This module is finetuned on ChnSentiCorp dataset to do sentiment claasification. It can do sentiment analysis prediction directly, label as positive or negative.", + author="baidu-nlp", + author_email="", + type="nlp/sentiment_analysis", +) +class ErnieSkepSentimentAnalysis(TransformerModule): + """ + Ernie_skep_sentiment_analysis module is initialize with enie_1.0_chn_large when pretraining. + This module is finetuned on ChnSentiCorp dataset to do sentiment claasification. + It can do sentiment analysis prediction directly, label as positive or negative. + """ + + def _initialize(self): + ernie_config_path = os.path.join(self.directory, "assets", + "ernie_1.0_large_ch.config.json") + self.ernie_config = ErnieConfig(ernie_config_path) + self.MAX_SEQ_LEN = 512 + self.vocab_path = os.path.join(self.directory, "assets", + "ernie_1.0_large_ch.vocab.txt") + self.params_path = os.path.join(self.directory, "assets", "params") + + self.infer_model_path = os.path.join(self.directory, "assets", + "inference_step_601") + self.tokenizer = FullTokenizer(vocab_file=self.vocab_path) + + self.vocab = self.tokenizer.vocab + self.pad_id = self.vocab["[PAD]"] + self.label_map = {0: 'negative', 1: 'positive'} + + self._set_config() + + def _set_config(self): + """ + predictor config setting + """ + model_file_path = os.path.join(self.infer_model_path, 'model') + params_file_path = os.path.join(self.infer_model_path, 'params') + + config = AnalysisConfig(model_file_path, params_file_path) + try: + _places = os.environ["CUDA_VISIBLE_DEVICES"] + int(_places[0]) + use_gpu = True + except: + use_gpu = False + + if use_gpu: + config.enable_use_gpu(8000, 0) + else: + config.disable_gpu() + + config.disable_glog_info() + + self.predictor = create_paddle_predictor(config) + + def net(self, input_ids, position_ids, segment_ids, input_mask): + """ + create neural network. + Args: + input_ids (tensor): the word ids. + position_ids (tensor): the position ids. + segment_ids (tensor): the segment ids. + input_mask (tensor): the padding mask. + + Returns: + pooled_output (tensor): sentence-level output for classification task. + sequence_output (tensor): token-level output for sequence task. + """ + ernie = ErnieModel( + src_ids=input_ids, + position_ids=position_ids, + sentence_ids=segment_ids, + input_mask=input_mask, + config=self.ernie_config, + use_fp16=False) + + pooled_output = ernie.get_pooled_output() + sequence_output = ernie.get_sequence_output() + return pooled_output, sequence_output + + def array2tensor(self, arr_data): + """ + convert numpy array to PaddleTensor + """ + tensor_data = PaddleTensor(arr_data) + return tensor_data + + @serving + def predict_sentiment(self, texts=[], use_gpu=False): + """ + Get the sentiment label for the predicted texts. It will be classified as positive and negative. + Args: + texts (list(str)): the data to be predicted. + use_gpu (bool): Whether to use gpu or not. + Returns: + res (list): The result of sentiment label and probabilties. + """ + + if use_gpu: + try: + _places = os.environ["CUDA_VISIBLE_DEVICES"] + int(_places[0]) + except: + raise RuntimeError( + "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id." + ) + + results = [] + for text in texts: + feature = self._convert_text_to_feature(text) + inputs = [self.array2tensor(ndarray) for ndarray in feature] + output = self.predictor.run(inputs) + probilities = np.array(output[0].data.float_data()) + label = self.label_map[np.argmax(probilities)] + result = { + 'text': text, + 'sentiment_label': label, + 'positive_probs': probilities[1], + 'negative_probs': probilities[0] + } + results.append(result) + + return results + + def _convert_text_to_feature(self, text): + """ + Convert the raw text to feature which is needed to run program (feed_vars). + """ + text_a = convert_to_unicode(text) + tokens_a = self.tokenizer.tokenize(text_a) + max_seq_len = 512 + + # Account for [CLS] and [SEP] with "- 2" + if len(tokens_a) > max_seq_len - 2: + tokens_a = tokens_a[0:(max_seq_len - 2)] + + tokens = [] + text_type_ids = [] + tokens.append("[CLS]") + text_type_ids.append(0) + for token in tokens_a: + tokens.append(token) + text_type_ids.append(0) + tokens.append("[SEP]") + text_type_ids.append(0) + + token_ids = self.tokenizer.convert_tokens_to_ids(tokens) + position_ids = list(range(len(token_ids))) + task_ids = [0] * len(token_ids) + + padded_token_ids, input_mask = pad_batch_data([token_ids], + max_seq_len=max_seq_len, + pad_idx=self.pad_id, + return_input_mask=True) + padded_text_type_ids = pad_batch_data([text_type_ids], + max_seq_len=max_seq_len, + pad_idx=self.pad_id) + padded_position_ids = pad_batch_data([position_ids], + max_seq_len=max_seq_len, + pad_idx=self.pad_id) + padded_task_ids = pad_batch_data([task_ids], + max_seq_len=max_seq_len, + pad_idx=self.pad_id) + + feature = [ + padded_token_ids, padded_position_ids, padded_text_type_ids, + input_mask, padded_task_ids + ] + return feature + + @runnable + def run_cmd(self, argvs): + """ + Run as a command + """ + self.parser = argparse.ArgumentParser( + description="Run the %s module." % self.name, + prog='hub run %s' % self.name, + usage='%(prog)s', + add_help=True) + + self.arg_input_group = self.parser.add_argument_group( + title="Input options", description="Input data. Required") + self.arg_config_group = self.parser.add_argument_group( + title="Config options", + description= + "Run configuration for controlling module behavior, not required.") + + self.add_module_config_arg() + self.add_module_input_arg() + + args = self.parser.parse_args(argvs) + results = self.predict_sentiment( + texts=[args.input_text], use_gpu=args.use_gpu) + return results + + def add_module_config_arg(self): + """ + Add the command config options + """ + self.arg_config_group.add_argument( + '--use_gpu', + type=ast.literal_eval, + default=False, + help="whether use GPU or not") + + def add_module_input_arg(self): + """ + Add the command input options + """ + self.arg_input_group.add_argument( + '--input_text', type=str, default=None, help="data to be predicted") + + +if __name__ == '__main__': + test_module = ErnieSkepSentimentAnalysis() + test_texts = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分'] + results = test_module.predict_sentiment(test_texts, use_gpu=False) + print(results) + test_module.context(max_seq_len=128) + print(test_module.get_embedding(texts=[['你不是不聪明,而是不认真']])) + print(test_module.get_params_layer()) diff --git a/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml b/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml new file mode 100644 index 00000000..a50edc19 --- /dev/null +++ b/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml @@ -0,0 +1,9 @@ +name: ernie_skep_sentiment_analysis +dir: "modules/text/sentiment_analysis/ernie_skep_sentiment_analysis" +exclude: + - README.md +resources: + - + url: https://paddlehub.bj.bcebos.com/model/nlp/ernie_skep_sentiment_analysis/assets.tar.gz + dest: assets + uncompress: True diff --git a/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py b/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py new file mode 100644 index 00000000..bcceb238 --- /dev/null +++ b/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py @@ -0,0 +1,129 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +from unittest import TestCase, main +os.environ['CUDA_VISIBLE_DEVICES'] = '1' + +import numpy as np +import paddlehub as hub + + +class ErnieSkepSentimentAnalysisTestCase(TestCase): + def setUp(self): + self.module = hub.Module(name='ernie_skep_sentiment_analysis') + self.test_text = [[ + '飞桨(PaddlePaddle)是国内开源产业级深度学习平台', 'PaddleHub是飞桨生态的预训练模型应用工具' + ], ["飞浆PaddleHub"]] + self.test_data = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分'] + self.results = [{ + 'text': '你不是不聪明,而是不认真', + 'sentiment_label': 'negative', + 'positive_probs': 0.10738213360309601, + 'negative_probs': 0.8926178216934204 + }, + { + 'text': '虽然小明很努力,但是他还是没有考100分', + 'sentiment_label': 'negative', + 'positive_probs': 0.053915347903966904, + 'negative_probs': 0.9460846185684204 + }] + + def test_predict_sentiment(self): + results_1 = self.module.predict_sentiment(self.test_data, use_gpu=False) + results_2 = self.module.predict_sentiment(self.test_data, use_gpu=True) + + for index, res in enumerate(results_1): + self.assertEqual(res['text'], self.results[index]['text']) + self.assertEqual(res['sentiment_label'], + self.results[index]['sentiment_label']) + self.assertTrue( + abs(res['positive_probs'] - + self.results[index]['positive_probs']) < 1e-6) + self.assertTrue( + abs(res['negative_probs'] - + self.results[index]['negative_probs']) < 1e-6) + + self.assertEqual(res['text'], results_2[index]['text']) + self.assertEqual(res['sentiment_label'], + results_2[index]['sentiment_label']) + self.assertTrue( + abs(res['positive_probs'] - + results_2[index]['positive_probs']) < 1e-6) + self.assertTrue( + abs(res['negative_probs'] - + results_2[index]['negative_probs']) < 1e-6) + + def test_get_embedding(self): + # test batch_size + max_seq_len = 128 + results = self.module.get_embedding( + texts=self.test_text, + use_gpu=False, + batch_size=1, + max_seq_len=max_seq_len) + results_2 = self.module.get_embedding( + texts=self.test_text, + use_gpu=False, + batch_size=10, + max_seq_len=max_seq_len) + # 2 sample results + self.assertEqual(len(results), 2) + self.assertEqual(len(results_2), 2) + # sequence embedding and token embedding results per sample + self.assertEqual(len(results[0]), 2) + self.assertEqual(len(results_2[0]), 2) + # sequence embedding shape + self.assertEqual(results[0][0].shape, (1024, )) + self.assertEqual(results_2[0][0].shape, (1024, )) + # token embedding shape + self.assertEqual(results[0][1].shape, (max_seq_len, 1024)) + self.assertEqual(results_2[0][1].shape, (max_seq_len, 1024)) + + # test gpu + results_3 = self.module.get_embedding( + texts=self.test_text, + use_gpu=True, + batch_size=1, + max_seq_len=max_seq_len) + diff = np.abs(results[0][0] - results_3[0][0]) + self.assertTrue((diff < 1e-6).all) + diff = np.abs(results[0][1] - results_3[0][1]) + self.assertTrue((diff < 1e-6).all) + diff = np.abs(results[1][0] - results_3[1][0]) + self.assertTrue((diff < 1e-6).all) + diff = np.abs(results[1][1] - results_3[1][1]) + self.assertTrue((diff < 1e-6).all) + + def test_get_params_layer(self): + self.module.context() + layers = self.module.get_params_layer() + layers = list(set(layers.values())) + true_layers = [i for i in range(24)] + self.assertEqual(layers, true_layers) + + def test_get_spm_path(self): + self.assertEqual(self.module.get_spm_path(), None) + + def test_get_word_dict_path(self): + self.assertEqual(self.module.get_word_dict_path(), None) + + def test_get_vocab_path(self): + vocab_path = self.module.get_vocab_path() + true_vocab_path = os.path.join(self.module.directory, "assets", + "ernie_1.0_large_ch.vocab.txt") + self.assertEqual(vocab_path, true_vocab_path) + + +if __name__ == '__main__': + main() diff --git a/paddlehub/module/nlp_module.py b/paddlehub/module/nlp_module.py index 55a3a533..211f7313 100644 --- a/paddlehub/module/nlp_module.py +++ b/paddlehub/module/nlp_module.py @@ -319,8 +319,6 @@ class TransformerModule(NLPBaseModule): pretraining_params_path, main_program=main_program, predicate=existed_params) - logger.info("Load pretraining parameters from {}.".format( - pretraining_params_path)) def param_prefix(self): return "@HUB_%s@" % self.name -- GitLab