From e4a319d3e4092092be388b7fb953a8bb6036f2a3 Mon Sep 17 00:00:00 2001
From: Steffy-zxf <48793257+Steffy-zxf@users.noreply.github.com>
Date: Fri, 29 May 2020 15:39:50 +0800
Subject: [PATCH] add ernie-skep (chnsenticorp) (#627)
---
.../efficientnetb0_small_imagenet/module.py | 2 +-
.../module.py | 2 +-
.../mobilenet_v2_animals/module.py | 2 +-
.../mobilenet_v2_dishes/module.py | 2 +-
.../mobilenet_v2_imagenet_ssld/module.py | 2 +-
.../module.py | 2 +-
.../module.py | 2 +-
.../resnet18_vd_imagenet/module.py | 2 +-
.../resnet50_vd_animals/module.py | 2 +-
.../resnet50_vd_dishes/module.py | 2 +-
.../resnet50_vd_imagenet_ssld/module.py | 2 +-
.../resnet50_vd_wildanimals/module.py | 2 +-
.../se_resnet18_vd_imagenet/module.py | 2 +-
.../pyramidbox_face_detection/module.py | 2 +-
.../pyramidbox_lite_mobile/module.py | 2 +-
.../pyramidbox_lite_mobile_mask/module.py | 2 +-
.../pyramidbox_lite_server/module.py | 2 +-
.../pyramidbox_lite_server_mask/module.py | 2 +-
.../module.py | 2 +-
.../module.py | 2 +-
.../face_landmark_localization/module.py | 2 +-
.../faster_rcnn_resnet50_coco2017/module.py | 2 +-
.../module.py | 2 +-
.../retinanet_resnet50_fpn_coco2017/module.py | 2 +-
.../ssd_mobilenet_v1_pascal/module.py | 2 +-
.../ssd_vgg16_512_coco2017/module.py | 2 +-
.../yolov3_darknet53_coco2017/module.py | 2 +-
.../yolov3_darknet53_pedestrian/module.py | 2 +-
.../yolov3_darknet53_vehicles/module.py | 2 +-
.../yolov3_mobilenet_v1_coco2017/module.py | 2 +-
.../yolov3_resnet34_coco2017/module.py | 2 +-
.../yolov3_resnet50_vd_coco2017/module.py | 2 +-
.../semantic_segmentation/ace2p/module.py | 2 +-
.../deeplabv3p_xception65_humanseg/module.py | 2 +-
.../stylepro_artistic/module.py | 2 +-
.../ernie_skep_sentiment_analysis/README.md | 152 +
.../assets/ernie_1.0_large_ch.config.json | 14 +
.../assets/ernie_1.0_large_ch.vocab.txt | 12089 ++++++++++++++++
.../model/__init__.py | 0
.../model/ernie.py | 377 +
.../model/transformer_encoder.py | 501 +
.../ernie_skep_sentiment_analysis/module.py | 258 +
.../configs/ernie_skep_sentiment_analysis.yml | 9 +
.../test_ernie_skep_sentiment_analysis.py | 129 +
paddlehub/module/nlp_module.py | 2 -
45 files changed, 13564 insertions(+), 37 deletions(-)
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py
create mode 100644 hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py
create mode 100644 hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml
create mode 100644 hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py
diff --git a/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py b/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py
index efd069f3..393092cb 100644
--- a/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py
+++ b/hub_module/modules/image/classification/efficientnetb0_small_imagenet/module.py
@@ -175,7 +175,7 @@ class EfficientNetB0ImageNet(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py b/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py
index 40a12edf..ffd4d064 100644
--- a/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py
+++ b/hub_module/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/module.py
@@ -161,7 +161,7 @@ class FixResnext10132x48dwslImagenet(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if not self.predictor_set:
diff --git a/hub_module/modules/image/classification/mobilenet_v2_animals/module.py b/hub_module/modules/image/classification/mobilenet_v2_animals/module.py
index 87f6f53a..b8afcae0 100644
--- a/hub_module/modules/image/classification/mobilenet_v2_animals/module.py
+++ b/hub_module/modules/image/classification/mobilenet_v2_animals/module.py
@@ -161,7 +161,7 @@ class MobileNetV2Animals(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py b/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py
index 3b9abdd5..f1be00a3 100644
--- a/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py
+++ b/hub_module/modules/image/classification/mobilenet_v2_dishes/module.py
@@ -161,7 +161,7 @@ class MobileNetV2Dishes(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
index 598d7112..a2bacc74 100644
--- a/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
+++ b/hub_module/modules/image/classification/mobilenet_v2_imagenet_ssld/module.py
@@ -184,7 +184,7 @@ class MobileNetV2ImageNetSSLD(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py
index fcbe7374..07dd93a7 100644
--- a/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py
+++ b/hub_module/modules/image/classification/mobilenet_v3_large_imagenet_ssld/module.py
@@ -161,7 +161,7 @@ class MobileNetV3Large(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py b/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py
index 4c447dbf..5e24ce93 100644
--- a/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py
+++ b/hub_module/modules/image/classification/mobilenet_v3_small_imagenet_ssld/module.py
@@ -161,7 +161,7 @@ class MobileNetV3Small(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py b/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py
index 9870a5db..8171f3f0 100644
--- a/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py
+++ b/hub_module/modules/image/classification/resnet18_vd_imagenet/module.py
@@ -161,7 +161,7 @@ class ResNet18vdImageNet(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if not self.predictor_set:
diff --git a/hub_module/modules/image/classification/resnet50_vd_animals/module.py b/hub_module/modules/image/classification/resnet50_vd_animals/module.py
index 5c555eba..ed6abe6a 100644
--- a/hub_module/modules/image/classification/resnet50_vd_animals/module.py
+++ b/hub_module/modules/image/classification/resnet50_vd_animals/module.py
@@ -161,7 +161,7 @@ class ResNet50vdAnimals(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/resnet50_vd_dishes/module.py b/hub_module/modules/image/classification/resnet50_vd_dishes/module.py
index fb2f3de8..b554a8fc 100644
--- a/hub_module/modules/image/classification/resnet50_vd_dishes/module.py
+++ b/hub_module/modules/image/classification/resnet50_vd_dishes/module.py
@@ -161,7 +161,7 @@ class ResNet50vdDishes(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py b/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py
index 9464a722..380eb839 100644
--- a/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py
+++ b/hub_module/modules/image/classification/resnet50_vd_imagenet_ssld/module.py
@@ -161,7 +161,7 @@ class ResNet50vdDishes(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py b/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py
index 14fd2f9c..3a8d811a 100644
--- a/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py
+++ b/hub_module/modules/image/classification/resnet50_vd_wildanimals/module.py
@@ -161,7 +161,7 @@ class ResNet50vdWildAnimals(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_data = list()
diff --git a/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py b/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py
index ec219bd8..4e6d6db7 100644
--- a/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py
+++ b/hub_module/modules/image/classification/se_resnet18_vd_imagenet/module.py
@@ -161,7 +161,7 @@ class SEResNet18vdImageNet(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if not self.predictor_set:
diff --git a/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py b/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py
index de0354e2..c62b8f43 100644
--- a/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py
+++ b/hub_module/modules/image/face_detection/pyramidbox_face_detection/module.py
@@ -83,7 +83,7 @@ class PyramidBoxFaceDetection(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py
index 9e30c589..77d05bc3 100644
--- a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py
+++ b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile/module.py
@@ -81,7 +81,7 @@ class PyramidBoxLiteMobile(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py
index 391aaedf..91b1adfa 100644
--- a/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py
+++ b/hub_module/modules/image/face_detection/pyramidbox_lite_mobile_mask/module.py
@@ -107,7 +107,7 @@ class PyramidBoxLiteMobileMask(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py
index fe9b3b84..739739b7 100644
--- a/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py
+++ b/hub_module/modules/image/face_detection/pyramidbox_lite_server/module.py
@@ -81,7 +81,7 @@ class PyramidBoxLiteServer(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py b/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py
index 8fd45be7..59270c64 100644
--- a/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py
+++ b/hub_module/modules/image/face_detection/pyramidbox_lite_server_mask/module.py
@@ -106,7 +106,7 @@ class PyramidBoxLiteServerMask(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py
index dafd8525..8237b7f3 100644
--- a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py
+++ b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_320/module.py
@@ -107,7 +107,7 @@ class FaceDetector320(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py
index 32075ed6..16352378 100644
--- a/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py
+++ b/hub_module/modules/image/face_detection/ultra_light_fast_generic_face_detector_1mb_640/module.py
@@ -106,7 +106,7 @@ class FaceDetector640(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py b/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py
index 7c8d25d6..5b21ad79 100644
--- a/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py
+++ b/hub_module/modules/image/keypoint_detection/face_landmark_localization/module.py
@@ -133,7 +133,7 @@ class FaceLandmarkLocalization(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# get all data
diff --git a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py
index b65aa88e..c61cc84a 100644
--- a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_coco2017/module.py
@@ -323,7 +323,7 @@ class FasterRCNNResNet50(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
if data and 'image' in data:
diff --git a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py
index c64f1297..f84521ac 100644
--- a/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/faster_rcnn_resnet50_fpn_coco2017/module.py
@@ -333,7 +333,7 @@ class FasterRCNNResNet50RPN(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py b/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py
index 4025bb87..83effbdb 100644
--- a/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/retinanet_resnet50_fpn_coco2017/module.py
@@ -240,7 +240,7 @@ class RetinaNetResNet50FPN(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
all_images = list()
diff --git a/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py b/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py
index 315bb2dd..a433d779 100644
--- a/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py
+++ b/hub_module/modules/image/object_detection/ssd_mobilenet_v1_pascal/module.py
@@ -194,7 +194,7 @@ class SSDMobileNetv1(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py b/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py
index a0514153..bdf252ad 100644
--- a/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/ssd_vgg16_512_coco2017/module.py
@@ -200,7 +200,7 @@ class SSDVGG16_512(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py
index 9ffe7022..f3ebbda1 100644
--- a/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_darknet53_coco2017/module.py
@@ -186,7 +186,7 @@ class YOLOv3DarkNet53Coco2017(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py
index 6f76e25c..1258b757 100644
--- a/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_darknet53_pedestrian/module.py
@@ -199,7 +199,7 @@ class YOLOv3DarkNet53Pedestrian(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py b/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py
index 685afbff..e1a064cd 100644
--- a/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_darknet53_vehicles/module.py
@@ -199,7 +199,7 @@ class YOLOv3DarkNet53Vehicles(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py
index 03bde930..674e6aa5 100644
--- a/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_mobilenet_v1_coco2017/module.py
@@ -189,7 +189,7 @@ class YOLOv3MobileNetV1Coco2017(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py
index 98712df2..54f4f427 100644
--- a/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_resnet34_coco2017/module.py
@@ -191,7 +191,7 @@ class YOLOv3ResNet34Coco2017(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py b/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py
index 4e5a4d05..2e65abfe 100644
--- a/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py
+++ b/hub_module/modules/image/object_detection/yolov3_resnet50_vd_coco2017/module.py
@@ -193,7 +193,7 @@ class YOLOv3ResNet50Coco2017(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
paths = paths if paths else list()
diff --git a/hub_module/modules/image/semantic_segmentation/ace2p/module.py b/hub_module/modules/image/semantic_segmentation/ace2p/module.py
index 149b981e..d8908525 100644
--- a/hub_module/modules/image/semantic_segmentation/ace2p/module.py
+++ b/hub_module/modules/image/semantic_segmentation/ace2p/module.py
@@ -86,7 +86,7 @@ class ACE2P(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py b/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py
index 84c4b762..b6f0f227 100644
--- a/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py
+++ b/hub_module/modules/image/semantic_segmentation/deeplabv3p_xception65_humanseg/module.py
@@ -82,7 +82,7 @@ class DeeplabV3pXception65HumanSeg(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
diff --git a/hub_module/modules/image/style_transfer/stylepro_artistic/module.py b/hub_module/modules/image/style_transfer/stylepro_artistic/module.py
index 86373516..7fc14612 100644
--- a/hub_module/modules/image/style_transfer/stylepro_artistic/module.py
+++ b/hub_module/modules/image/style_transfer/stylepro_artistic/module.py
@@ -104,7 +104,7 @@ class StyleProjection(hub.Module):
int(_places[0])
except:
raise RuntimeError(
- "Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
im_output = []
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md
new file mode 100644
index 00000000..46417e6f
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/README.md
@@ -0,0 +1,152 @@
+## 概述
+
+SKEP(Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis)是百度研究团队在2020年提出的基于情感知识增强的情感预训练算法,此算法采用无监督方法自动挖掘情感知识,然后利用情感知识构建预训练目标,从而让机器学会理解情感语义,在14项中英情感分析典型任务上全面超越SOTA,相关工作已经被ACL 2020录用。SKEP为各类情感分析任务提供统一且强大的情感语义表示。ernie_skep_sentiment_analysis Module可用于句子级情感分析任务预测。其在预训练时使用ERNIE 1.0 large预训练参数作为其网络参数初始化继续预训练。同时,该Module支持完成句子级情感分析任务迁移学习Fine-tune。
+
+
+
+
+
+更多详情参考ACL 2020论文[SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis](https://arxiv.org/abs/2005.05635)
+
+## 命令行预测
+
+```shell
+$ hub run ernie_skep_sentiment_analysis --input_text='虽然小明很努力,但是他还是没有考100分'
+```
+
+## API
+
+```python
+def predict_sentiment(texts=[], use_gpu=False)
+```
+
+预测API,分类输入文本的情感极性。
+
+**参数**
+
+* texts (list\[str\]): 待预测文本;
+* use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量**;
+
+**返回**
+
+* res (list\[dict\]): 情感分类结果的列表,列表中每一个元素为 dict,各字段为:
+ * text(str): 输入预测文本
+ * sentiment_label(str): 情感分类结果,或为positive或为negative
+ * positive_probs: 输入预测文本情感极性属于positive的概率
+ * negative_probs: 输入预测文本情感极性属于negative的概率
+
+```python
+def context(trainable=True, max_seq_len=128)
+```
+用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
+
+**参数**
+* trainable(bool): 设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
+* max_seq_len(int): SKEP模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
+
+**返回**
+* inputs: dict类型,各字段为:
+ * input_ids(Variable): Token Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型;
+ * position_id(Variable): Position Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型;
+ * segment_ids(Variable): Sentence Embedding,shape为\[batch_size, max_seq_len\],dtype为int64类型;
+ * input_mask(Variable): token是否为padding的标识,shape为\[batch_size, max_seq_len\],dtype为int64类型;
+
+* outputs:dict类型,Module的输出特征,各字段为:
+ * pooled_output(Variable): 句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],dtype为int64类型;
+ * sequence_output(Variable): 字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],dtype为int64类型;
+
+* program:包含该Module计算图的Program。
+
+```python
+def get_embedding(texts, use_gpu=False, batch_size=1)
+```
+
+用于获取输入文本的句子粒度特征与字粒度特征
+
+**参数**
+
+* texts(list):输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
+* use_gpu(bool):是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量**;
+
+**返回**
+
+* results(list): embedding特征,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
+
+```python
+def get_params_layer()
+```
+
+用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
+
+**参数**
+
+* 无
+
+**返回**
+
+* params_layer(dict): key为参数名,值为参数所在层数
+
+**代码示例**
+
+情感极性预测代码示例:
+
+```python
+import paddlehub as hub
+
+# Load ernie_skep_sentiment_analysis module.
+module = hub.Module(name="ernie_skep_sentiment_analysis")
+
+# Predict sentiment label
+test_texts = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分']
+results = module.predict_sentiment(test_texts, use_gpu=False)
+```
+
+## 服务部署
+
+PaddleHub Serving 可以部署一个目标检测的在线服务。
+
+### 第一步:启动PaddleHub Serving
+
+运行启动命令:
+```shell
+$ hub serving start -m ernie_skep_sentiment_analysis
+```
+
+这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
+
+**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
+
+### 第二步:发送预测请求
+
+配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
+
+```python
+import requests
+import json
+
+# 发送HTTP请求
+data = {'texts':['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分']}
+headers = {"Content-type": "application/json"}
+url = "http://127.0.0.1:8866/predict/ernie_skep_sentiment_analysis"
+r = requests.post(url=url, headers=headers, data=json.dumps(data))
+
+# 打印预测结果
+print(r.json()["results"])
+```
+
+## 查看代码
+
+https://github.com/baidu/Senta
+
+### 依赖
+
+paddlepaddle >= 1.8.0
+
+paddlehub >= 1.7.0
+
+
+## 更新历史
+
+* 1.0.0
+
+ 初始发布
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json
new file mode 100644
index 00000000..75c3303b
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.config.json
@@ -0,0 +1,14 @@
+{
+ "attention_probs_dropout_prob": 0.1,
+ "hidden_act": "relu",
+ "hidden_dropout_prob": 0.1,
+ "hidden_size": 1024,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "num_attention_heads": 16,
+ "num_hidden_layers": 24,
+ "sent_type_vocab_size": 4,
+ "task_type_vocab_size": 16,
+ "vocab_size": 12800,
+ "use_task_id": false
+}
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt
new file mode 100644
index 00000000..e9604e7a
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/assets/ernie_1.0_large_ch.vocab.txt
@@ -0,0 +1,12089 @@
+[PAD] 0
+[CLS] 1
+[SEP] 2
+[MASK] 3
+, 4
+的 5
+、 6
+一 7
+人 8
+有 9
+是 10
+在 11
+中 12
+为 13
+和 14
+了 15
+不 16
+年 17
+学 18
+大 19
+国 20
+生 21
+以 22
+“ 23
+” 24
+作 25
+业 26
+个 27
+上 28
+用 29
+, 30
+地 31
+会 32
+成 33
+发 34
+工 35
+时 36
+于 37
+理 38
+出 39
+行 40
+要 41
+. 42
+等 43
+他 44
+到 45
+之 46
+这 47
+可 48
+后 49
+家 50
+对 51
+能 52
+公 53
+与 54
+》 55
+《 56
+主 57
+方 58
+分 59
+经 60
+来 61
+全 62
+其 63
+部 64
+多 65
+产 66
+自 67
+文 68
+高 69
+动 70
+进 71
+法 72
+化 73
+: 74
+我 75
+面 76
+) 77
+( 78
+实 79
+教 80
+建 81
+体 82
+而 83
+长 84
+子 85
+下 86
+现 87
+开 88
+本 89
+力 90
+定 91
+性 92
+过 93
+设 94
+合 95
+小 96
+同 97
+机 98
+市 99
+品 100
+水 101
+新 102
+内 103
+事 104
+也 105
+种 106
+及 107
+制 108
+入 109
+所 110
+心 111
+务 112
+就 113
+管 114
+们 115
+得 116
+展 117
+重 118
+民 119
+加 120
+区 121
+物 122
+者 123
+通 124
+天 125
+政 126
+三 127
+电 128
+关 129
+度 130
+第 131
+名 132
+术 133
+最 134
+系 135
+月 136
+外 137
+资 138
+日 139
+代 140
+员 141
+如 142
+间 143
+位 144
+并 145
+书 146
+科 147
+村 148
+应 149
+量 150
+道 151
+前 152
+当 153
+无 154
+里 155
+相 156
+平 157
+从 158
+计 159
+提 160
+保 161
+任 162
+程 163
+技 164
+都 165
+研 166
+十 167
+基 168
+特 169
+好 170
+被 171
+或 172
+目 173
+将 174
+使 175
+山 176
+二 177
+说 178
+数 179
+点 180
+明 181
+情 182
+元 183
+着 184
+收 185
+组 186
+然 187
+美 188
+各 189
+由 190
+场 191
+金 192
+形 193
+农 194
+期 195
+因 196
+表 197
+此 198
+色 199
+起 200
+还 201
+立 202
+世 203
+安 204
+活 205
+专 206
+质 207
+1 208
+规 209
+社 210
+万 211
+信 212
+西 213
+统 214
+结 215
+路 216
+利 217
+次 218
+南 219
+式 220
+意 221
+级 222
+常 223
+师 224
+校 225
+你 226
+育 227
+果 228
+究 229
+司 230
+服 231
+门 232
+海 233
+导 234
+流 235
+项 236
+她 237
+总 238
+处 239
+两 240
+传 241
+东 242
+正 243
+省 244
+院 245
+户 246
+手 247
+具 248
+2 249
+原 250
+强 251
+北 252
+向 253
+先 254
+但 255
+米 256
+城 257
+企 258
+件 259
+风 260
+军 261
+身 262
+更 263
+知 264
+已 265
+气 266
+战 267
+至 268
+单 269
+口 270
+集 271
+创 272
+解 273
+四 274
+标 275
+交 276
+比 277
+商 278
+论 279
+界 280
+题 281
+变 282
+花 283
+3 284
+改 285
+类 286
+运 287
+指 288
+型 289
+调 290
+女 291
+神 292
+接 293
+造 294
+受 295
+广 296
+只 297
+委 298
+去 299
+共 300
+治 301
+达 302
+持 303
+条 304
+网 305
+头 306
+构 307
+县 308
+些 309
+该 310
+又 311
+那 312
+想 313
+样 314
+办 315
+济 316
+5 317
+格 318
+责 319
+车 320
+很 321
+施 322
+求 323
+己 324
+光 325
+精 326
+林 327
+完 328
+爱 329
+线 330
+参 331
+少 332
+积 333
+清 334
+看 335
+优 336
+报 337
+王 338
+直 339
+没 340
+每 341
+据 342
+游 343
+效 344
+感 345
+五 346
+影 347
+别 348
+获 349
+领 350
+称 351
+选 352
+供 353
+乐 354
+老 355
+么 356
+台 357
+问 358
+划 359
+带 360
+器 361
+源 362
+织 363
+放 364
+深 365
+备 366
+视 367
+白 368
+功 369
+取 370
+装 371
+营 372
+见 373
+记 374
+环 375
+队 376
+节 377
+准 378
+石 379
+它 380
+回 381
+历 382
+负 383
+真 384
+增 385
+医 386
+联 387
+做 388
+职 389
+容 390
+士 391
+包 392
+义 393
+观 394
+团 395
+病 396
+4 397
+府 398
+息 399
+则 400
+考 401
+料 402
+华 403
+州 404
+语 405
+证 406
+整 407
+让 408
+江 409
+史 410
+空 411
+验 412
+需 413
+支 414
+命 415
+给 416
+离 417
+认 418
+艺 419
+较 420
+土 421
+古 422
+养 423
+才 424
+境 425
+推 426
+把 427
+均 428
+图 429
+际 430
+斯 431
+近 432
+片 433
+局 434
+修 435
+字 436
+德 437
+权 438
+步 439
+始 440
+复 441
+转 442
+协 443
+即 444
+打 445
+画 446
+投 447
+决 448
+何 449
+约 450
+反 451
+quot 452
+费 453
+议 454
+护 455
+极 456
+河 457
+房 458
+查 459
+布 460
+思 461
+干 462
+价 463
+儿 464
+非 465
+马 466
+党 467
+奖 468
+模 469
+故 470
+编 471
+音 472
+范 473
+识 474
+率 475
+存 476
+引 477
+客 478
+属 479
+评 480
+采 481
+尔 482
+配 483
+镇 484
+室 485
+再 486
+案 487
+监 488
+习 489
+注 490
+根 491
+克 492
+演 493
+食 494
+族 495
+示 496
+球 497
+状 498
+青 499
+号 500
+张 501
+百 502
+素 503
+首 504
+易 505
+热 506
+阳 507
+今 508
+园 509
+防 510
+版 511
+太 512
+乡 513
+英 514
+6 515
+材 516
+列 517
+便 518
+写 519
+住 520
+置 521
+层 522
+助 523
+确 524
+试 525
+难 526
+承 527
+象 528
+居 529
+10 530
+黄 531
+快 532
+断 533
+维 534
+却 535
+红 536
+速 537
+连 538
+众 539
+0 540
+细 541
+态 542
+话 543
+周 544
+言 545
+药 546
+培 547
+血 548
+亩 549
+龙 550
+越 551
+值 552
+几 553
+边 554
+读 555
+未 556
+曾 557
+测 558
+算 559
+京 560
+景 561
+余 562
+站 563
+低 564
+温 565
+消 566
+必 567
+切 568
+依 569
+随 570
+且 571
+志 572
+卫 573
+域 574
+照 575
+许 576
+限 577
+著 578
+销 579
+落 580
+足 581
+适 582
+争 583
+策 584
+8 585
+控 586
+武 587
+按 588
+7 589
+初 590
+角 591
+核 592
+死 593
+检 594
+富 595
+满 596
+显 597
+审 598
+除 599
+致 600
+亲 601
+占 602
+失 603
+星 604
+章 605
+善 606
+续 607
+千 608
+叶 609
+火 610
+副 611
+告 612
+段 613
+什 614
+声 615
+终 616
+况 617
+走 618
+木 619
+益 620
+戏 621
+独 622
+纪 623
+植 624
+财 625
+群 626
+六 627
+赛 628
+远 629
+拉 630
+亚 631
+密 632
+排 633
+超 634
+像 635
+课 636
+围 637
+往 638
+响 639
+击 640
+疗 641
+念 642
+八 643
+云 644
+险 645
+律 646
+请 647
+革 648
+诗 649
+批 650
+底 651
+压 652
+双 653
+男 654
+训 655
+例 656
+汉 657
+升 658
+拥 659
+势 660
+酒 661
+眼 662
+官 663
+牌 664
+油 665
+曲 666
+友 667
+望 668
+黑 669
+歌 670
+筑 671
+础 672
+香 673
+仅 674
+担 675
+括 676
+湖 677
+严 678
+秀 679
+剧 680
+九 681
+举 682
+执 683
+充 684
+兴 685
+督 686
+博 687
+草 688
+般 689
+李 690
+健 691
+喜 692
+授 693
+普 694
+预 695
+灵 696
+突 697
+良 698
+款 699
+罗 700
+9 701
+微 702
+七 703
+录 704
+朝 705
+飞 706
+宝 707
+令 708
+轻 709
+劳 710
+距 711
+异 712
+简 713
+兵 714
+树 715
+序 716
+候 717
+含 718
+福 719
+尽 720
+留 721
+20 722
+丰 723
+旅 724
+征 725
+临 726
+破 727
+移 728
+篇 729
+抗 730
+典 731
+端 732
+苏 733
+奇 734
+止 735
+康 736
+店 737
+毛 738
+觉 739
+春 740
+售 741
+络 742
+降 743
+板 744
+坚 745
+母 746
+讲 747
+早 748
+印 749
+略 750
+孩 751
+夫 752
+藏 753
+铁 754
+害 755
+互 756
+帝 757
+田 758
+融 759
+皮 760
+宗 761
+岁 762
+载 763
+析 764
+斗 765
+须 766
+伤 767
+12 768
+介 769
+另 770
+00 771
+半 772
+班 773
+馆 774
+味 775
+楼 776
+卡 777
+射 778
+述 779
+杀 780
+波 781
+绿 782
+免 783
+兰 784
+绝 785
+刻 786
+短 787
+察 788
+输 789
+择 790
+综 791
+杂 792
+份 793
+纳 794
+父 795
+词 796
+银 797
+送 798
+座 799
+左 800
+继 801
+固 802
+宣 803
+厂 804
+肉 805
+换 806
+补 807
+税 808
+派 809
+套 810
+欢 811
+播 812
+吸 813
+圆 814
+攻 815
+阿 816
+购 817
+听 818
+右 819
+减 820
+激 821
+巴 822
+背 823
+够 824
+遇 825
+智 826
+玉 827
+找 828
+宽 829
+陈 830
+练 831
+追 832
+毕 833
+彩 834
+软 835
+帮 836
+股 837
+荣 838
+托 839
+予 840
+佛 841
+堂 842
+障 843
+皇 844
+若 845
+守 846
+似 847
+届 848
+待 849
+货 850
+散 851
+额 852
+30 853
+尚 854
+穿 855
+丽 856
+骨 857
+享 858
+差 859
+针 860
+索 861
+稳 862
+宁 863
+贵 864
+酸 865
+液 866
+唐 867
+操 868
+探 869
+玩 870
+促 871
+笔 872
+库 873
+救 874
+虽 875
+久 876
+闻 877
+顶 878
+床 879
+港 880
+鱼 881
+亿 882
+登 883
+11 884
+永 885
+毒 886
+桥 887
+冷 888
+魔 889
+秘 890
+陆 891
+您 892
+童 893
+归 894
+侧 895
+沙 896
+染 897
+封 898
+紧 899
+松 900
+川 901
+刘 902
+15 903
+雄 904
+希 905
+毫 906
+卷 907
+某 908
+季 909
+菜 910
+庭 911
+附 912
+逐 913
+夜 914
+宫 915
+洲 916
+退 917
+顾 918
+尼 919
+胜 920
+剂 921
+纯 922
+舞 923
+遗 924
+苦 925
+梦 926
+挥 927
+航 928
+愿 929
+街 930
+招 931
+矿 932
+夏 933
+盖 934
+献 935
+怎 936
+茶 937
+申 938
+39 939
+吧 940
+脑 941
+亦 942
+吃 943
+频 944
+宋 945
+央 946
+威 947
+厚 948
+块 949
+冲 950
+叫 951
+熟 952
+礼 953
+厅 954
+否 955
+渐 956
+笑 957
+钱 958
+钟 959
+甚 960
+牛 961
+丝 962
+靠 963
+岛 964
+绍 965
+盘 966
+缘 967
+聚 968
+静 969
+雨 970
+氏 971
+圣 972
+顺 973
+唱 974
+刊 975
+阶 976
+困 977
+急 978
+饰 979
+弹 980
+庄 981
+既 982
+野 983
+阴 984
+混 985
+饮 986
+损 987
+齐 988
+末 989
+错 990
+轮 991
+宜 992
+鲜 993
+兼 994
+敌 995
+粉 996
+祖 997
+延 998
+100 999
+钢 1000
+辑 1001
+欧 1002
+硬 1003
+甲 1004
+诉 1005
+册 1006
+痛 1007
+订 1008
+缺 1009
+晚 1010
+衣 1011
+佳 1012
+脉 1013
+gt 1014
+盛 1015
+乎 1016
+拟 1017
+贸 1018
+扩 1019
+船 1020
+仪 1021
+谁 1022
+警 1023
+50 1024
+停 1025
+席 1026
+竞 1027
+释 1028
+庆 1029
+汽 1030
+仍 1031
+掌 1032
+诸 1033
+仙 1034
+弟 1035
+吉 1036
+洋 1037
+奥 1038
+票 1039
+危 1040
+架 1041
+买 1042
+径 1043
+塔 1044
+休 1045
+付 1046
+恶 1047
+雷 1048
+怀 1049
+秋 1050
+借 1051
+巨 1052
+透 1053
+誉 1054
+厘 1055
+句 1056
+跟 1057
+胞 1058
+婚 1059
+幼 1060
+烈 1061
+峰 1062
+寻 1063
+君 1064
+汇 1065
+趣 1066
+纸 1067
+假 1068
+肥 1069
+患 1070
+杨 1071
+雅 1072
+罪 1073
+谓 1074
+亮 1075
+脱 1076
+寺 1077
+烟 1078
+判 1079
+绩 1080
+乱 1081
+刚 1082
+摄 1083
+洞 1084
+践 1085
+码 1086
+启 1087
+励 1088
+呈 1089
+曰 1090
+呢 1091
+符 1092
+哥 1093
+媒 1094
+疾 1095
+坐 1096
+雪 1097
+孔 1098
+倒 1099
+旧 1100
+菌 1101
+岩 1102
+鼓 1103
+亡 1104
+访 1105
+症 1106
+暗 1107
+湾 1108
+幸 1109
+池 1110
+讨 1111
+努 1112
+露 1113
+吗 1114
+繁 1115
+途 1116
+殖 1117
+败 1118
+蛋 1119
+握 1120
+刺 1121
+耕 1122
+洗 1123
+沉 1124
+概 1125
+哈 1126
+泛 1127
+凡 1128
+残 1129
+隐 1130
+虫 1131
+朋 1132
+虚 1133
+餐 1134
+殊 1135
+慢 1136
+询 1137
+蒙 1138
+孙 1139
+谈 1140
+鲁 1141
+裂 1142
+贴 1143
+污 1144
+漫 1145
+谷 1146
+违 1147
+泉 1148
+拿 1149
+森 1150
+横 1151
+扬 1152
+键 1153
+膜 1154
+迁 1155
+尤 1156
+涉 1157
+净 1158
+诚 1159
+折 1160
+冰 1161
+械 1162
+拍 1163
+梁 1164
+沿 1165
+避 1166
+吴 1167
+惊 1168
+犯 1169
+灭 1170
+湿 1171
+迷 1172
+姓 1173
+阅 1174
+灯 1175
+妇 1176
+触 1177
+冠 1178
+答 1179
+俗 1180
+档 1181
+尊 1182
+谢 1183
+措 1184
+筹 1185
+竟 1186
+韩 1187
+签 1188
+剑 1189
+鉴 1190
+灾 1191
+贯 1192
+迹 1193
+洛 1194
+沟 1195
+束 1196
+翻 1197
+巧 1198
+坏 1199
+弱 1200
+零 1201
+壁 1202
+枝 1203
+映 1204
+恩 1205
+抓 1206
+屋 1207
+呼 1208
+脚 1209
+绘 1210
+40 1211
+淡 1212
+辖 1213
+2010 1214
+伊 1215
+粒 1216
+欲 1217
+震 1218
+伯 1219
+私 1220
+蓝 1221
+甘 1222
+储 1223
+胡 1224
+卖 1225
+梅 1226
+16 1227
+耳 1228
+疑 1229
+润 1230
+伴 1231
+泽 1232
+牧 1233
+烧 1234
+尾 1235
+累 1236
+糖 1237
+怪 1238
+唯 1239
+莫 1240
+粮 1241
+柱 1242
+18 1243
+竹 1244
+灰 1245
+岸 1246
+缩 1247
+井 1248
+伦 1249
+柔 1250
+盟 1251
+珠 1252
+丹 1253
+amp 1254
+皆 1255
+哪 1256
+迎 1257
+颜 1258
+衡 1259
+啊 1260
+塑 1261
+寒 1262
+13 1263
+紫 1264
+镜 1265
+25 1266
+氧 1267
+误 1268
+伍 1269
+彻 1270
+刀 1271
+览 1272
+炎 1273
+津 1274
+耐 1275
+秦 1276
+尖 1277
+潮 1278
+描 1279
+浓 1280
+召 1281
+禁 1282
+阻 1283
+胶 1284
+译 1285
+腹 1286
+泰 1287
+乃 1288
+盐 1289
+潜 1290
+鸡 1291
+诺 1292
+遍 1293
+2000 1294
+纹 1295
+冬 1296
+牙 1297
+麻 1298
+辅 1299
+猪 1300
+弃 1301
+楚 1302
+羊 1303
+晋 1304
+14 1305
+鸟 1306
+赵 1307
+洁 1308
+谋 1309
+隆 1310
+滑 1311
+60 1312
+2008 1313
+籍 1314
+臣 1315
+朱 1316
+泥 1317
+墨 1318
+辆 1319
+墙 1320
+浪 1321
+姐 1322
+赏 1323
+纵 1324
+2006 1325
+拔 1326
+倍 1327
+纷 1328
+摩 1329
+壮 1330
+苗 1331
+偏 1332
+塞 1333
+贡 1334
+仁 1335
+宇 1336
+卵 1337
+瓦 1338
+枪 1339
+覆 1340
+殿 1341
+刑 1342
+贫 1343
+妈 1344
+幅 1345
+幕 1346
+忆 1347
+丁 1348
+估 1349
+废 1350
+萨 1351
+舍 1352
+详 1353
+旗 1354
+岗 1355
+洪 1356
+80 1357
+贝 1358
+2009 1359
+迅 1360
+凭 1361
+勇 1362
+雕 1363
+奏 1364
+旋 1365
+杰 1366
+煤 1367
+阵 1368
+乘 1369
+溪 1370
+奉 1371
+畜 1372
+挑 1373
+昌 1374
+硕 1375
+庙 1376
+惠 1377
+薄 1378
+逃 1379
+爆 1380
+哲 1381
+浙 1382
+珍 1383
+炼 1384
+栏 1385
+暴 1386
+币 1387
+隔 1388
+吨 1389
+倾 1390
+嘉 1391
+址 1392
+陶 1393
+绕 1394
+诊 1395
+遭 1396
+桃 1397
+魂 1398
+兽 1399
+豆 1400
+闲 1401
+箱 1402
+拓 1403
+燃 1404
+裁 1405
+晶 1406
+掉 1407
+脂 1408
+溶 1409
+顿 1410
+肤 1411
+虑 1412
+鬼 1413
+2007 1414
+灌 1415
+徐 1416
+龄 1417
+陵 1418
+恋 1419
+侵 1420
+坡 1421
+寿 1422
+勤 1423
+磨 1424
+妹 1425
+瑞 1426
+缓 1427
+轴 1428
+麦 1429
+羽 1430
+咨 1431
+凝 1432
+默 1433
+驻 1434
+敢 1435
+债 1436
+17 1437
+浮 1438
+幻 1439
+株 1440
+浅 1441
+敬 1442
+敏 1443
+陷 1444
+凤 1445
+坛 1446
+虎 1447
+乌 1448
+铜 1449
+御 1450
+乳 1451
+讯 1452
+循 1453
+圈 1454
+肌 1455
+妙 1456
+奋 1457
+忘 1458
+闭 1459
+墓 1460
+21 1461
+汤 1462
+忠 1463
+2005 1464
+跨 1465
+怕 1466
+振 1467
+宾 1468
+跑 1469
+屏 1470
+坦 1471
+粗 1472
+租 1473
+悲 1474
+伟 1475
+拜 1476
+24 1477
+妻 1478
+赞 1479
+兄 1480
+宿 1481
+碑 1482
+貌 1483
+勒 1484
+罚 1485
+夺 1486
+偶 1487
+截 1488
+纤 1489
+2011 1490
+齿 1491
+郑 1492
+聘 1493
+偿 1494
+扶 1495
+豪 1496
+慧 1497
+跳 1498
+the 1499
+疏 1500
+莱 1501
+腐 1502
+插 1503
+恐 1504
+郎 1505
+辞 1506
+挂 1507
+娘 1508
+肿 1509
+徒 1510
+伏 1511
+磁 1512
+杯 1513
+丛 1514
+旨 1515
+琴 1516
+19 1517
+炮 1518
+醒 1519
+砖 1520
+替 1521
+辛 1522
+暖 1523
+锁 1524
+杜 1525
+肠 1526
+孤 1527
+饭 1528
+脸 1529
+邮 1530
+贷 1531
+lt 1532
+俄 1533
+毁 1534
+荷 1535
+谐 1536
+荒 1537
+肝 1538
+链 1539
+2004 1540
+2012 1541
+尺 1542
+尘 1543
+援 1544
+a 1545
+疫 1546
+崇 1547
+恢 1548
+扎 1549
+伸 1550
+幽 1551
+抵 1552
+胸 1553
+谱 1554
+舒 1555
+迫 1556
+200 1557
+畅 1558
+泡 1559
+岭 1560
+喷 1561
+70 1562
+窗 1563
+捷 1564
+宏 1565
+肯 1566
+90 1567
+狂 1568
+铺 1569
+骑 1570
+抽 1571
+券 1572
+俱 1573
+徽 1574
+胆 1575
+碎 1576
+邀 1577
+褐 1578
+斤 1579
+涂 1580
+赋 1581
+署 1582
+颗 1583
+2003 1584
+渠 1585
+仿 1586
+迪 1587
+炉 1588
+辉 1589
+涵 1590
+耗 1591
+22 1592
+返 1593
+邻 1594
+斑 1595
+董 1596
+魏 1597
+午 1598
+娱 1599
+浴 1600
+尿 1601
+曼 1602
+锅 1603
+柳 1604
+舰 1605
+搭 1606
+旁 1607
+宅 1608
+趋 1609
+of 1610
+凉 1611
+赢 1612
+伙 1613
+爷 1614
+廷 1615
+戴 1616
+壤 1617
+奶 1618
+页 1619
+玄 1620
+驾 1621
+阔 1622
+轨 1623
+朗 1624
+捕 1625
+肾 1626
+稿 1627
+惯 1628
+侯 1629
+乙 1630
+渡 1631
+稍 1632
+恨 1633
+脏 1634
+2002 1635
+姆 1636
+腔 1637
+抱 1638
+杆 1639
+垂 1640
+赴 1641
+赶 1642
+莲 1643
+辽 1644
+荐 1645
+旦 1646
+妖 1647
+2013 1648
+稀 1649
+驱 1650
+沈 1651
+役 1652
+晓 1653
+亭 1654
+仲 1655
+澳 1656
+500 1657
+炸 1658
+绪 1659
+28 1660
+陕 1661
+and 1662
+23 1663
+恒 1664
+堡 1665
+纠 1666
+仇 1667
+懂 1668
+焦 1669
+搜 1670
+s 1671
+忍 1672
+贤 1673
+添 1674
+i 1675
+艾 1676
+赤 1677
+犹 1678
+尝 1679
+锦 1680
+稻 1681
+撰 1682
+填 1683
+衰 1684
+栽 1685
+邪 1686
+粘 1687
+跃 1688
+桌 1689
+胃 1690
+悬 1691
+c 1692
+翼 1693
+彼 1694
+睡 1695
+曹 1696
+刷 1697
+摆 1698
+悉 1699
+锋 1700
+26 1701
+摇 1702
+抢 1703
+乏 1704
+廉 1705
+鼠 1706
+盾 1707
+瓷 1708
+抑 1709
+埃 1710
+邦 1711
+遂 1712
+寸 1713
+渔 1714
+祥 1715
+胎 1716
+牵 1717
+壳 1718
+甜 1719
+卓 1720
+瓜 1721
+袭 1722
+遵 1723
+巡 1724
+逆 1725
+玛 1726
+韵 1727
+2001 1728
+桑 1729
+酷 1730
+赖 1731
+桂 1732
+郡 1733
+肃 1734
+仓 1735
+寄 1736
+塘 1737
+瘤 1738
+300 1739
+碳 1740
+搞 1741
+燕 1742
+蒸 1743
+允 1744
+忽 1745
+斜 1746
+穷 1747
+郁 1748
+囊 1749
+奔 1750
+昆 1751
+盆 1752
+愈 1753
+递 1754
+1000 1755
+黎 1756
+祭 1757
+怒 1758
+辈 1759
+腺 1760
+滚 1761
+暂 1762
+郭 1763
+璃 1764
+踪 1765
+芳 1766
+碍 1767
+肺 1768
+狱 1769
+冒 1770
+阁 1771
+砂 1772
+35 1773
+苍 1774
+揭 1775
+踏 1776
+颇 1777
+柄 1778
+闪 1779
+孝 1780
+葡 1781
+腾 1782
+茎 1783
+鸣 1784
+撤 1785
+仰 1786
+伐 1787
+丘 1788
+於 1789
+泪 1790
+荡 1791
+扰 1792
+纲 1793
+拼 1794
+欣 1795
+纽 1796
+癌 1797
+堆 1798
+27 1799
+菲 1800
+b 1801
+披 1802
+挖 1803
+寓 1804
+履 1805
+捐 1806
+悟 1807
+乾 1808
+嘴 1809
+钻 1810
+拳 1811
+吹 1812
+柏 1813
+遥 1814
+抚 1815
+忧 1816
+赠 1817
+霸 1818
+艰 1819
+淋 1820
+猫 1821
+帅 1822
+奈 1823
+寨 1824
+滴 1825
+鼻 1826
+掘 1827
+狗 1828
+驶 1829
+朴 1830
+拆 1831
+惜 1832
+玻 1833
+扣 1834
+萄 1835
+蔬 1836
+宠 1837
+2014 1838
+缴 1839
+赫 1840
+凯 1841
+滨 1842
+乔 1843
+腰 1844
+葬 1845
+孟 1846
+吾 1847
+枚 1848
+圳 1849
+忙 1850
+扫 1851
+杭 1852
+凌 1853
+1998 1854
+梯 1855
+丈 1856
+隶 1857
+1999 1858
+剪 1859
+盗 1860
+擅 1861
+疆 1862
+弯 1863
+携 1864
+拒 1865
+秒 1866
+颁 1867
+醇 1868
+割 1869
+浆 1870
+姑 1871
+爸 1872
+螺 1873
+穗 1874
+缝 1875
+慈 1876
+喝 1877
+瓶 1878
+漏 1879
+悠 1880
+猎 1881
+番 1882
+孕 1883
+伪 1884
+漂 1885
+腿 1886
+吐 1887
+坝 1888
+滤 1889
+函 1890
+匀 1891
+偷 1892
+浩 1893
+矛 1894
+僧 1895
+辨 1896
+俊 1897
+棉 1898
+铸 1899
+29 1900
+诞 1901
+丧 1902
+夹 1903
+to 1904
+姿 1905
+睛 1906
+淮 1907
+阀 1908
+姜 1909
+45 1910
+尸 1911
+猛 1912
+1997 1913
+芽 1914
+账 1915
+旱 1916
+醉 1917
+弄 1918
+坊 1919
+烤 1920
+萧 1921
+矣 1922
+雾 1923
+倡 1924
+榜 1925
+弗 1926
+氨 1927
+朵 1928
+锡 1929
+袋 1930
+拨 1931
+湘 1932
+岳 1933
+烦 1934
+肩 1935
+熙 1936
+炭 1937
+婆 1938
+棋 1939
+禅 1940
+穴 1941
+宙 1942
+汗 1943
+艳 1944
+儒 1945
+叙 1946
+晨 1947
+颈 1948
+峡 1949
+拖 1950
+烂 1951
+茂 1952
+戒 1953
+飘 1954
+氛 1955
+蒂 1956
+撞 1957
+瓣 1958
+箭 1959
+叛 1960
+1996 1961
+31 1962
+鞋 1963
+劲 1964
+祝 1965
+娜 1966
+饲 1967
+侍 1968
+诱 1969
+叹 1970
+卢 1971
+弥 1972
+32 1973
+鼎 1974
+厦 1975
+屈 1976
+慕 1977
+魅 1978
+m 1979
+厨 1980
+嫁 1981
+绵 1982
+逼 1983
+扮 1984
+叔 1985
+酶 1986
+燥 1987
+狼 1988
+滋 1989
+汁 1990
+辐 1991
+怨 1992
+翅 1993
+佩 1994
+坑 1995
+旬 1996
+沃 1997
+剩 1998
+蛇 1999
+颖 2000
+篮 2001
+锐 2002
+侠 2003
+匹 2004
+唤 2005
+熊 2006
+漠 2007
+迟 2008
+敦 2009
+雌 2010
+谨 2011
+婴 2012
+浸 2013
+磷 2014
+筒 2015
+2015 2016
+滩 2017
+埋 2018
+框 2019
+弘 2020
+吕 2021
+碰 2022
+纺 2023
+硫 2024
+堪 2025
+契 2026
+蜜 2027
+蓄 2028
+1995 2029
+阐 2030
+apos 2031
+傲 2032
+碱 2033
+晰 2034
+狭 2035
+撑 2036
+叉 2037
+卧 2038
+劫 2039
+闹 2040
+赐 2041
+邓 2042
+奴 2043
+溉 2044
+浦 2045
+蹈 2046
+辣 2047
+遣 2048
+耀 2049
+耶 2050
+翠 2051
+t 2052
+叠 2053
+迈 2054
+霍 2055
+碧 2056
+恰 2057
+脊 2058
+昭 2059
+摸 2060
+饱 2061
+赔 2062
+泄 2063
+哭 2064
+讼 2065
+逝 2066
+逻 2067
+廊 2068
+擦 2069
+渗 2070
+彰 2071
+you 2072
+卿 2073
+旺 2074
+宪 2075
+36 2076
+顷 2077
+妆 2078
+陪 2079
+葛 2080
+仔 2081
+淀 2082
+翰 2083
+悦 2084
+穆 2085
+煮 2086
+辩 2087
+弦 2088
+in 2089
+串 2090
+押 2091
+蚀 2092
+逢 2093
+贺 2094
+焊 2095
+煌 2096
+缔 2097
+惑 2098
+鹿 2099
+袁 2100
+糊 2101
+逸 2102
+舟 2103
+勃 2104
+侦 2105
+涯 2106
+蔡 2107
+辟 2108
+涌 2109
+枯 2110
+痕 2111
+疼 2112
+莉 2113
+柴 2114
+1993 2115
+眉 2116
+1992 2117
+罢 2118
+催 2119
+衔 2120
+秉 2121
+妃 2122
+鸿 2123
+傅 2124
+400 2125
+辰 2126
+聪 2127
+咸 2128
+1994 2129
+扇 2130
+盈 2131
+勘 2132
+佐 2133
+泊 2134
+抛 2135
+搬 2136
+牢 2137
+宴 2138
+牲 2139
+贾 2140
+摘 2141
+姻 2142
+慎 2143
+帕 2144
+忌 2145
+卒 2146
+夕 2147
+卜 2148
+惟 2149
+挺 2150
+崖 2151
+炒 2152
+爵 2153
+冻 2154
+椒 2155
+鳞 2156
+祸 2157
+潭 2158
+腊 2159
+蒋 2160
+缠 2161
+寂 2162
+眠 2163
+冯 2164
+芯 2165
+槽 2166
+吊 2167
+33 2168
+150 2169
+聊 2170
+梗 2171
+嫩 2172
+凶 2173
+铭 2174
+爽 2175
+筋 2176
+韦 2177
+脾 2178
+铝 2179
+肢 2180
+栋 2181
+勾 2182
+萌 2183
+渊 2184
+掩 2185
+狮 2186
+撒 2187
+漆 2188
+骗 2189
+禽 2190
+38 2191
+蕴 2192
+坪 2193
+洒 2194
+冶 2195
+兹 2196
+椭 2197
+喻 2198
+泵 2199
+哀 2200
+翔 2201
+1990 2202
+棒 2203
+芝 2204
+x 2205
+扑 2206
+3000 2207
+毅 2208
+衍 2209
+惨 2210
+疯 2211
+欺 2212
+贼 2213
+肖 2214
+轰 2215
+巢 2216
+臂 2217
+轩 2218
+扁 2219
+淘 2220
+犬 2221
+宰 2222
+祠 2223
+挡 2224
+厌 2225
+帐 2226
+蜂 2227
+狐 2228
+垃 2229
+昂 2230
+圾 2231
+秩 2232
+芬 2233
+瞬 2234
+枢 2235
+舌 2236
+唇 2237
+棕 2238
+1984 2239
+霞 2240
+霜 2241
+艇 2242
+侨 2243
+鹤 2244
+硅 2245
+靖 2246
+哦 2247
+削 2248
+泌 2249
+奠 2250
+d 2251
+吏 2252
+夷 2253
+咖 2254
+彭 2255
+窑 2256
+胁 2257
+肪 2258
+120 2259
+贞 2260
+劝 2261
+钙 2262
+柜 2263
+鸭 2264
+75 2265
+庞 2266
+兔 2267
+荆 2268
+丙 2269
+纱 2270
+34 2271
+戈 2272
+藤 2273
+矩 2274
+泳 2275
+惧 2276
+铃 2277
+渴 2278
+胀 2279
+袖 2280
+丸 2281
+狠 2282
+豫 2283
+茫 2284
+1985 2285
+浇 2286
+菩 2287
+氯 2288
+啡 2289
+1988 2290
+葱 2291
+37 2292
+梨 2293
+霉 2294
+脆 2295
+氢 2296
+巷 2297
+丑 2298
+娃 2299
+锻 2300
+愤 2301
+贪 2302
+蝶 2303
+1991 2304
+厉 2305
+闽 2306
+浑 2307
+斩 2308
+栖 2309
+l 2310
+茅 2311
+昏 2312
+龟 2313
+碗 2314
+棚 2315
+滞 2316
+慰 2317
+600 2318
+2016 2319
+斋 2320
+虹 2321
+屯 2322
+萝 2323
+饼 2324
+窄 2325
+潘 2326
+绣 2327
+丢 2328
+芦 2329
+鳍 2330
+42 2331
+裕 2332
+誓 2333
+腻 2334
+48 2335
+95 2336
+锈 2337
+吞 2338
+蜀 2339
+啦 2340
+扭 2341
+5000 2342
+巩 2343
+髓 2344
+1987 2345
+劣 2346
+拌 2347
+谊 2348
+涛 2349
+勋 2350
+郊 2351
+莎 2352
+痴 2353
+窝 2354
+驰 2355
+1986 2356
+跌 2357
+笼 2358
+挤 2359
+溢 2360
+1989 2361
+隙 2362
+55 2363
+鹰 2364
+诏 2365
+帽 2366
+65 2367
+芒 2368
+爬 2369
+凸 2370
+牺 2371
+熔 2372
+吻 2373
+竭 2374
+瘦 2375
+冥 2376
+800 2377
+搏 2378
+屡 2379
+昔 2380
+萼 2381
+愁 2382
+捉 2383
+翁 2384
+怖 2385
+汪 2386
+烯 2387
+疲 2388
+缸 2389
+溃 2390
+85 2391
+泼 2392
+剖 2393
+涨 2394
+橡 2395
+谜 2396
+悔 2397
+嫌 2398
+盒 2399
+苯 2400
+凹 2401
+绳 2402
+畏 2403
+罐 2404
+虾 2405
+柯 2406
+邑 2407
+馨 2408
+兆 2409
+帖 2410
+陌 2411
+禄 2412
+垫 2413
+壶 2414
+逊 2415
+骤 2416
+祀 2417
+晴 2418
+蓬 2419
+e 2420
+苞 2421
+煎 2422
+菊 2423
+堤 2424
+甫 2425
+拱 2426
+氮 2427
+罕 2428
+舶 2429
+伞 2430
+姚 2431
+弓 2432
+嵌 2433
+1983 2434
+1982 2435
+馈 2436
+琼 2437
+噪 2438
+雀 2439
+呵 2440
+汝 2441
+焉 2442
+陀 2443
+胺 2444
+惩 2445
+沼 2446
+枣 2447
+桐 2448
+酱 2449
+遮 2450
+孢 2451
+钝 2452
+呀 2453
+锥 2454
+妥 2455
+酿 2456
+巫 2457
+闯 2458
+沧 2459
+崩 2460
+蕊 2461
+酬 2462
+匠 2463
+躲 2464
+43 2465
+喊 2466
+98 2467
+琳 2468
+46 2469
+绎 2470
+喉 2471
+凰 2472
+抬 2473
+93 2474
+膨 2475
+盲 2476
+剥 2477
+喂 2478
+庸 2479
+奸 2480
+n 2481
+钩 2482
+冈 2483
+募 2484
+苑 2485
+杏 2486
+杉 2487
+辱 2488
+隋 2489
+薪 2490
+绒 2491
+1980 2492
+99 2493
+欠 2494
+尉 2495
+r 2496
+攀 2497
+抹 2498
+巾 2499
+1958 2500
+渣 2501
+苹 2502
+猴 2503
+悄 2504
+屠 2505
+41 2506
+颂 2507
+湛 2508
+魄 2509
+颠 2510
+1949 2511
+呆 2512
+粤 2513
+岂 2514
+娇 2515
+暑 2516
+44 2517
+56 2518
+52 2519
+鹅 2520
+筛 2521
+膏 2522
+樱 2523
+p 2524
+缆 2525
+襄 2526
+瑟 2527
+恭 2528
+泻 2529
+匪 2530
+兮 2531
+恼 2532
+吟 2533
+仕 2534
+蔽 2535
+骄 2536
+蚕 2537
+斥 2538
+椅 2539
+姬 2540
+谦 2541
+for 2542
+椎 2543
+搅 2544
+卸 2545
+沫 2546
+怜 2547
+坎 2548
+瑰 2549
+1978 2550
+钦 2551
+h 2552
+拾 2553
+厕 2554
+後 2555
+逾 2556
+薯 2557
+衬 2558
+钾 2559
+崔 2560
+稽 2561
+蛮 2562
+殷 2563
+晒 2564
+47 2565
+菇 2566
+臭 2567
+弧 2568
+擎 2569
+粹 2570
+纬 2571
+1500 2572
+焰 2573
+玲 2574
+竣 2575
+咒 2576
+歇 2577
+糕 2578
+诵 2579
+茨 2580
+妮 2581
+酯 2582
+麟 2583
+卑 2584
+浏 2585
+咽 2586
+罩 2587
+舱 2588
+酵 2589
+晕 2590
+顽 2591
+赁 2592
+咬 2593
+枫 2594
+冀 2595
+贮 2596
+艘 2597
+亏 2598
+薛 2599
+瀑 2600
+篆 2601
+膀 2602
+沸 2603
+雍 2604
+咳 2605
+尹 2606
+愉 2607
+烹 2608
+坠 2609
+勿 2610
+钠 2611
+64 2612
+坤 2613
+甸 2614
+墅 2615
+闸 2616
+藻 2617
+韧 2618
+鄂 2619
+58 2620
+51 2621
+91 2622
+j 2623
+瑶 2624
+舆 2625
+夸 2626
+54 2627
+蕾 2628
+栗 2629
+咏 2630
+丞 2631
+抄 2632
+鹏 2633
+弊 2634
+檐 2635
+骂 2636
+仆 2637
+峻 2638
+爪 2639
+赚 2640
+帆 2641
+娶 2642
+嘛 2643
+钓 2644
+澄 2645
+猜 2646
+1979 2647
+裔 2648
+抒 2649
+铅 2650
+卉 2651
+彦 2652
+f 2653
+删 2654
+衷 2655
+禹 2656
+寡 2657
+蒲 2658
+砌 2659
+on 2660
+棱 2661
+72 2662
+拘 2663
+堵 2664
+雁 2665
+仄 2666
+荫 2667
+53 2668
+k 2669
+1981 2670
+祈 2671
+49 2672
+奢 2673
+赌 2674
+寇 2675
+3d 2676
+隧 2677
+摊 2678
+雇 2679
+卦 2680
+婉 2681
+敲 2682
+挣 2683
+皱 2684
+虞 2685
+亨 2686
+懈 2687
+挽 2688
+珊 2689
+饶 2690
+滥 2691
+锯 2692
+闷 2693
+it 2694
+酮 2695
+虐 2696
+兑 2697
+僵 2698
+傻 2699
+62 2700
+沦 2701
+巅 2702
+鞭 2703
+梳 2704
+赣 2705
+锌 2706
+庐 2707
+薇 2708
+庵 2709
+57 2710
+96 2711
+慨 2712
+肚 2713
+妄 2714
+g 2715
+仗 2716
+绑 2717
+2017 2718
+枕 2719
+牡 2720
+000 2721
+胖 2722
+沪 2723
+垒 2724
+捞 2725
+捧 2726
+竖 2727
+蜡 2728
+桩 2729
+厢 2730
+孵 2731
+黏 2732
+拯 2733
+63 2734
+谭 2735
+68 2736
+诈 2737
+灿 2738
+釉 2739
+1956 2740
+裹 2741
+钮 2742
+俩 2743
+o 2744
+灶 2745
+彝 2746
+蟹 2747
+涩 2748
+醋 2749
+110 2750
+匙 2751
+歧 2752
+刹 2753
+玫 2754
+棘 2755
+橙 2756
+凑 2757
+桶 2758
+刃 2759
+伽 2760
+4000 2761
+硝 2762
+怡 2763
+籽 2764
+敞 2765
+淳 2766
+矮 2767
+镶 2768
+戚 2769
+幢 2770
+涡 2771
+66 2772
+尧 2773
+膝 2774
+is 2775
+哉 2776
+肆 2777
+畔 2778
+溯 2779
+97 2780
+媚 2781
+烘 2782
+01 2783
+67 2784
+窃 2785
+焚 2786
+澜 2787
+愚 2788
+棵 2789
+乞 2790
+86 2791
+78 2792
+佑 2793
+76 2794
+iphone 2795
+暨 2796
+敷 2797
+饥 2798
+俯 2799
+蔓 2800
+v 2801
+05 2802
+88 2803
+暮 2804
+砍 2805
+邵 2806
+仑 2807
+毗 2808
+剿 2809
+馀 2810
+180 2811
+锤 2812
+刮 2813
+1950 2814
+梭 2815
+摧 2816
+250 2817
+掠 2818
+躯 2819
+诡 2820
+匈 2821
+侣 2822
+胚 2823
+疮 2824
+59 2825
+裙 2826
+windows 2827
+裸 2828
+08 2829
+塌 2830
+吓 2831
+俘 2832
+糙 2833
+藩 2834
+楷 2835
+羞 2836
+with 2837
+鲍 2838
+帘 2839
+裤 2840
+宛 2841
+憾 2842
+桓 2843
+痰 2844
+寞 2845
+骚 2846
+惹 2847
+笋 2848
+萃 2849
+92 2850
+栓 2851
+61 2852
+挫 2853
+矢 2854
+垦 2855
+09 2856
+垄 2857
+绸 2858
+凄 2859
+your 2860
+镀 2861
+熏 2862
+钉 2863
+1945 2864
+led 2865
+粪 2866
+缅 2867
+洽 2868
+鞘 2869
+蔗 2870
+82 2871
+迄 2872
+沐 2873
+凿 2874
+勉 2875
+昨 2876
+喘 2877
+700 2878
+爹 2879
+屑 2880
+耻 2881
+沥 2882
+庶 2883
+涅 2884
+腕 2885
+袍 2886
+懒 2887
+阜 2888
+嗜 2889
+朔 2890
+1200 2891
+蒜 2892
+沛 2893
+坟 2894
+轿 2895
+喀 2896
+笛 2897
+狄 2898
+饿 2899
+蓉 2900
+泣 2901
+窟 2902
+130 2903
+豹 2904
+屿 2905
+73 2906
+崛 2907
+迦 2908
+诠 2909
+贬 2910
+腥 2911
+83 2912
+钥 2913
+嗣 2914
+瑜 2915
+07 2916
+倦 2917
+萎 2918
+拦 2919
+冤 2920
+讽 2921
+潇 2922
+谣 2923
+趁 2924
+1960 2925
+妨 2926
+84 2927
+贩 2928
+74 2929
+萍 2930
+窦 2931
+纂 2932
+缀 2933
+矫 2934
+淑 2935
+墩 2936
+梵 2937
+沾 2938
+淫 2939
+乖 2940
+汰 2941
+莞 2942
+81 2943
+旷 2944
+浊 2945
+挚 2946
+撼 2947
+69 2948
+87 2949
+氟 2950
+焕 2951
+06 2952
+庚 2953
+掀 2954
+诀 2955
+kg 2956
+盼 2957
+71 2958
+疹 2959
+窖 2960
+匆 2961
+厥 2962
+轧 2963
+89 2964
+淹 2965
+94 2966
+160 2967
+亥 2968
+鸦 2969
+棍 2970
+谅 2971
+歼 2972
+汕 2973
+挪 2974
+蚁 2975
+敛 2976
+魁 2977
+畴 2978
+炫 2979
+丫 2980
+奎 2981
+菱 2982
+沂 2983
+撕 2984
+阎 2985
+詹 2986
+03 2987
+蛛 2988
+77 2989
+靡 2990
+瞻 2991
+咱 2992
+愧 2993
+烷 2994
+畸 2995
+灸 2996
+眸 2997
+that 2998
+觅 2999
+芜 3000
+1955 3001
+廓 3002
+斌 3003
+躁 3004
+麓 3005
+摔 3006
+1970 3007
+烛 3008
+睹 3009
+孜 3010
+缚 3011
+堕 3012
+昼 3013
+睿 3014
+琪 3015
+琉 3016
+贱 3017
+6000 3018
+渝 3019
+跋 3020
+1959 3021
+茄 3022
+1957 3023
+舜 3024
+1976 3025
+诛 3026
+1952 3027
+捣 3028
+芙 3029
+04 3030
+1961 3031
+倚 3032
+1938 3033
+酰 3034
+澈 3035
+慌 3036
+帜 3037
+颤 3038
+陇 3039
+1962 3040
+02 3041
+颌 3042
+昧 3043
+佣 3044
+眷 3045
+徙 3046
+禾 3047
+逮 3048
+1948 3049
+79 3050
+莹 3051
+碟 3052
+梢 3053
+朽 3054
+粥 3055
+喇 3056
+1964 3057
+榆 3058
+驳 3059
+楔 3060
+1965 3061
+啸 3062
+肋 3063
+dna 3064
+踢 3065
+1975 3066
+1937 3067
+u 3068
+傍 3069
+桔 3070
+肴 3071
+呕 3072
+旭 3073
+埠 3074
+贿 3075
+曝 3076
+杖 3077
+俭 3078
+栩 3079
+1953 3080
+斧 3081
+镁 3082
+匾 3083
+踩 3084
+橘 3085
+颅 3086
+1963 3087
+囚 3088
+蛙 3089
+1946 3090
+膳 3091
+坞 3092
+琐 3093
+荧 3094
+瘟 3095
+涤 3096
+胰 3097
+衫 3098
+噬 3099
+皖 3100
+邱 3101
+埔 3102
+汀 3103
+羡 3104
+睐 3105
+葵 3106
+耿 3107
+糟 3108
+厄 3109
+秧 3110
+黔 3111
+蹄 3112
+140 3113
+漳 3114
+鞍 3115
+谏 3116
+腋 3117
+簇 3118
+梧 3119
+戎 3120
+1977 3121
+榴 3122
+诣 3123
+宦 3124
+苔 3125
+揽 3126
+簧 3127
+狸 3128
+阙 3129
+扯 3130
+耍 3131
+棠 3132
+脓 3133
+烫 3134
+翘 3135
+芭 3136
+躺 3137
+羁 3138
+藉 3139
+拐 3140
+1966 3141
+陡 3142
+1954 3143
+漓 3144
+棺 3145
+钧 3146
+琅 3147
+扔 3148
+寝 3149
+绚 3150
+熬 3151
+驿 3152
+邹 3153
+杠 3154
+1972 3155
+w 3156
+绥 3157
+窥 3158
+晃 3159
+渭 3160
+1947 3161
+樊 3162
+鑫 3163
+祁 3164
+陋 3165
+哺 3166
+堰 3167
+祛 3168
+y 3169
+梓 3170
+崎 3171
+1968 3172
+孽 3173
+蝴 3174
+蔚 3175
+抖 3176
+苟 3177
+肇 3178
+溜 3179
+绅 3180
+妾 3181
+1940 3182
+跪 3183
+沁 3184
+q 3185
+1973 3186
+莽 3187
+虏 3188
+be 3189
+瞄 3190
+砸 3191
+稚 3192
+僚 3193
+崭 3194
+迭 3195
+皂 3196
+彬 3197
+雏 3198
+ip 3199
+羲 3200
+缕 3201
+绞 3202
+俞 3203
+簿 3204
+耸 3205
+廖 3206
+嘲 3207
+can 3208
+1969 3209
+翌 3210
+榄 3211
+裴 3212
+槐 3213
+1939 3214
+洼 3215
+睁 3216
+1951 3217
+灼 3218
+啤 3219
+臀 3220
+啥 3221
+濒 3222
+醛 3223
+峨 3224
+葫 3225
+悍 3226
+笨 3227
+嘱 3228
+1935 3229
+稠 3230
+360 3231
+韶 3232
+1941 3233
+陛 3234
+峭 3235
+1974 3236
+酚 3237
+翩 3238
+舅 3239
+8000 3240
+寅 3241
+1936 3242
+蕉 3243
+阮 3244
+垣 3245
+戮 3246
+me 3247
+趾 3248
+犀 3249
+巍 3250
+re 3251
+霄 3252
+1942 3253
+1930 3254
+饪 3255
+sci 3256
+秆 3257
+朕 3258
+驼 3259
+肛 3260
+揉 3261
+ipad 3262
+楠 3263
+岚 3264
+疡 3265
+帧 3266
+柑 3267
+iso9001 3268
+赎 3269
+逍 3270
+滇 3271
+璋 3272
+礁 3273
+黛 3274
+钞 3275
+邢 3276
+涧 3277
+劈 3278
+瞳 3279
+砚 3280
+驴 3281
+1944 3282
+锣 3283
+恳 3284
+栅 3285
+吵 3286
+牟 3287
+沌 3288
+瞩 3289
+咪 3290
+毯 3291
+炳 3292
+淤 3293
+盯 3294
+芋 3295
+粟 3296
+350 3297
+栈 3298
+戊 3299
+盏 3300
+峪 3301
+拂 3302
+暇 3303
+酥 3304
+汛 3305
+900 3306
+pc 3307
+嚣 3308
+2500 3309
+轼 3310
+妒 3311
+匿 3312
+1934 3313
+鸽 3314
+蝉 3315
+cd 3316
+痒 3317
+宵 3318
+瘫 3319
+1927 3320
+1943 3321
+璧 3322
+汲 3323
+1971 3324
+冢 3325
+碌 3326
+琢 3327
+磅 3328
+卤 3329
+105 3330
+剔 3331
+谎 3332
+圩 3333
+酌 3334
+捏 3335
+渺 3336
+媳 3337
+1933 3338
+穹 3339
+谥 3340
+骏 3341
+哨 3342
+骆 3343
+乒 3344
+10000 3345
+摹 3346
+兜 3347
+柿 3348
+喧 3349
+呜 3350
+捡 3351
+橄 3352
+逗 3353
+瑚 3354
+呐 3355
+檀 3356
+辜 3357
+妊 3358
+祯 3359
+1931 3360
+苷 3361
+don 3362
+衙 3363
+笃 3364
+芸 3365
+霖 3366
+荔 3367
+闺 3368
+羌 3369
+芹 3370
+dvd 3371
+哼 3372
+糯 3373
+吼 3374
+蕃 3375
+嵩 3376
+矶 3377
+绽 3378
+坯 3379
+娠 3380
+1928 3381
+祷 3382
+锰 3383
+qq 3384
+by 3385
+瘀 3386
+108 3387
+岐 3388
+1932 3389
+茵 3390
+筝 3391
+斐 3392
+肽 3393
+歉 3394
+1929 3395
+嗽 3396
+恤 3397
+汶 3398
+聂 3399
+樟 3400
+擒 3401
+鹃 3402
+拙 3403
+鲤 3404
+絮 3405
+鄙 3406
+彪 3407
+ipod 3408
+z 3409
+嗓 3410
+墟 3411
+骼 3412
+渤 3413
+僻 3414
+豁 3415
+谕 3416
+荟 3417
+姨 3418
+婷 3419
+挠 3420
+哇 3421
+炙 3422
+220 3423
+诅 3424
+娥 3425
+哑 3426
+阱 3427
+嫉 3428
+圭 3429
+乓 3430
+橱 3431
+歪 3432
+禧 3433
+甩 3434
+坷 3435
+晏 3436
+驯 3437
+讳 3438
+泗 3439
+煞 3440
+my 3441
+淄 3442
+倪 3443
+妓 3444
+窍 3445
+竿 3446
+襟 3447
+匡 3448
+钛 3449
+侈 3450
+ll 3451
+侄 3452
+铲 3453
+哮 3454
+厩 3455
+1967 3456
+亢 3457
+101 3458
+辕 3459
+瘾 3460
+辊 3461
+狩 3462
+掷 3463
+潍 3464
+240 3465
+伺 3466
+嘿 3467
+弈 3468
+嘎 3469
+陨 3470
+娅 3471
+1800 3472
+昊 3473
+犁 3474
+屁 3475
+蜘 3476
+170 3477
+寥 3478
+滕 3479
+毙 3480
+as 3481
+涝 3482
+谛 3483
+all 3484
+郝 3485
+痹 3486
+溺 3487
+汾 3488
+脐 3489
+馅 3490
+蠢 3491
+珀 3492
+腌 3493
+扼 3494
+敕 3495
+莓 3496
+峦 3497
+铬 3498
+谍 3499
+炬 3500
+龚 3501
+麒 3502
+睦 3503
+磺 3504
+吁 3505
+掺 3506
+烁 3507
+靶 3508
+or 3509
+圃 3510
+饵 3511
+褶 3512
+娟 3513
+滔 3514
+挨 3515
+android 3516
+褒 3517
+胱 3518
+cpu 3519
+晖 3520
+脖 3521
+垢 3522
+抉 3523
+冉 3524
+茧 3525
+from 3526
+渲 3527
+癫 3528
+125 3529
+de 3530
+悼 3531
+嫂 3532
+瞒 3533
+纶 3534
+肘 3535
+炖 3536
+瀚 3537
+皋 3538
+姊 3539
+颐 3540
+1600 3541
+俏 3542
+颊 3543
+gps 3544
+讶 3545
+札 3546
+奕 3547
+磊 3548
+镖 3549
+遐 3550
+眺 3551
+腑 3552
+boss 3553
+琦 3554
+蚊 3555
+窜 3556
+渍 3557
+嗯 3558
+102 3559
+1926 3560
+touch 3561
+夯 3562
+1300 3563
+笙 3564
+蘑 3565
+翡 3566
+碘 3567
+卯 3568
+啼 3569
+靓 3570
+辍 3571
+莺 3572
+躬 3573
+猿 3574
+杞 3575
+眩 3576
+虔 3577
+凋 3578
+遁 3579
+泾 3580
+岔 3581
+羟 3582
+弛 3583
+娄 3584
+茸 3585
+皓 3586
+峙 3587
+逅 3588
+邂 3589
+苇 3590
+楹 3591
+蹲 3592
+拢 3593
+甄 3594
+鳃 3595
+104 3596
+邯 3597
+捆 3598
+勺 3599
+450 3600
+酉 3601
+荚 3602
+唑 3603
+臻 3604
+辗 3605
+绰 3606
+徊 3607
+榨 3608
+苛 3609
+赦 3610
+盔 3611
+壬 3612
+恍 3613
+缉 3614
+2020 3615
+熨 3616
+7000 3617
+澡 3618
+桨 3619
+匣 3620
+兢 3621
+106 3622
+驭 3623
+x1 3624
+镍 3625
+孰 3626
+绮 3627
+馏 3628
+蝇 3629
+佼 3630
+鲸 3631
+128 3632
+哎 3633
+裳 3634
+蜕 3635
+嚼 3636
+嘻 3637
+web 3638
+庇 3639
+绢 3640
+倩 3641
+钵 3642
+ii 3643
+恪 3644
+帷 3645
+莆 3646
+柠 3647
+藕 3648
+砾 3649
+115 3650
+绊 3651
+喙 3652
+坂 3653
+徘 3654
+荀 3655
+瞧 3656
+蛾 3657
+1925 3658
+晦 3659
+ph 3660
+mm 3661
+铎 3662
+107 3663
+紊 3664
+锚 3665
+酪 3666
+稷 3667
+聋 3668
+闵 3669
+熹 3670
+冕 3671
+诫 3672
+珑 3673
+曦 3674
+篷 3675
+320 3676
+迥 3677
+蘖 3678
+胤 3679
+103 3680
+檬 3681
+瑾 3682
+钳 3683
+遏 3684
+辄 3685
+嬉 3686
+隅 3687
+ps 3688
+秃 3689
+112 3690
+帛 3691
+聆 3692
+芥 3693
+诬 3694
+1100 3695
+挟 3696
+宕 3697
+2018 3698
+鹊 3699
+琶 3700
+膛 3701
+mv 3702
+兀 3703
+gb 3704
+懿 3705
+碾 3706
+叮 3707
+863 3708
+蠕 3709
+譬 3710
+缮 3711
+烽 3712
+妍 3713
+榕 3714
+260 3715
+1920 3716
+邃 3717
+焙 3718
+倘 3719
+210 3720
+戌 3721
+茹 3722
+豚 3723
+晾 3724
+浒 3725
+玺 3726
+醚 3727
+祐 3728
+炽 3729
+this 3730
+缪 3731
+凛 3732
+噩 3733
+溅 3734
+毋 3735
+槛 3736
+ei 3737
+are 3738
+嫡 3739
+蝠 3740
+娴 3741
+稣 3742
+禀 3743
+壑 3744
+殆 3745
+敖 3746
+cm 3747
+ios 3748
+倭 3749
+挛 3750
+侃 3751
+蚌 3752
+咀 3753
+盎 3754
+殉 3755
+岑 3756
+浚 3757
+谬 3758
+狡 3759
+1924 3760
+癸 3761
+280 3762
+逛 3763
+耽 3764
+俺 3765
+璨 3766
+巳 3767
+茜 3768
+郸 3769
+蒴 3770
+琵 3771
+we 3772
+230 3773
+叩 3774
+泸 3775
+塾 3776
+one 3777
+稼 3778
+reg 3779
+侮 3780
+锂 3781
+曙 3782
+3500 3783
+up 3784
+薰 3785
+婿 3786
+惶 3787
+拭 3788
+篱 3789
+恬 3790
+淌 3791
+烙 3792
+袜 3793
+徵 3794
+慷 3795
+夭 3796
+噶 3797
+莘 3798
+135 3799
+鸳 3800
+殡 3801
+蚂 3802
+1900 3803
+憎 3804
+喃 3805
+佚 3806
+龛 3807
+潢 3808
+烃 3809
+at 3810
+岱 3811
+潺 3812
+109 3813
+衢 3814
+璀 3815
+5cm 3816
+1400 3817
+鹭 3818
+揣 3819
+痢 3820
+know 3821
+厮 3822
+氓 3823
+怠 3824
+no 3825
+nbsp 3826
+痘 3827
+硒 3828
+镌 3829
+乍 3830
+咯 3831
+惬 3832
+not 3833
+桦 3834
+骇 3835
+枉 3836
+蜗 3837
+睾 3838
+淇 3839
+耘 3840
+娓 3841
+弼 3842
+鳌 3843
+嗅 3844
+gdp 3845
+狙 3846
+箫 3847
+朦 3848
+椰 3849
+胥 3850
+丐 3851
+陂 3852
+唾 3853
+鳄 3854
+柚 3855
+谒 3856
+journal 3857
+戍 3858
+1912 3859
+刁 3860
+鸾 3861
+缭 3862
+骸 3863
+铣 3864
+酋 3865
+蝎 3866
+掏 3867
+耦 3868
+怯 3869
+娲 3870
+拇 3871
+汹 3872
+胧 3873
+疤 3874
+118 3875
+硼 3876
+恕 3877
+哗 3878
+眶 3879
+痫 3880
+凳 3881
+鲨 3882
+擢 3883
+歹 3884
+樵 3885
+瘠 3886
+app 3887
+茗 3888
+翟 3889
+黯 3890
+蜒 3891
+壹 3892
+殇 3893
+伶 3894
+辙 3895
+an 3896
+瑕 3897
+町 3898
+孚 3899
+痉 3900
+铵 3901
+搁 3902
+漾 3903
+戟 3904
+镰 3905
+鸯 3906
+猩 3907
+190 3908
+蔷 3909
+缤 3910
+叭 3911
+垩 3912
+113 3913
+曳 3914
+usb 3915
+奚 3916
+毓 3917
+ibm 3918
+颓 3919
+汐 3920
+靴 3921
+china 3922
+傣 3923
+尬 3924
+濮 3925
+赂 3926
+媛 3927
+懦 3928
+扦 3929
+111 3930
+韬 3931
+like 3932
+戳 3933
+java 3934
+雯 3935
+114 3936
+蜿 3937
+116 3938
+1923 3939
+笺 3940
+裘 3941
+尴 3942
+侗 3943
+mba 3944
+3g 3945
+钨 3946
+1919 3947
+苓 3948
+1922 3949
+寰 3950
+蛊 3951
+扳 3952
+搓 3953
+涟 3954
+睫 3955
+淬 3956
+5mm 3957
+123 3958
+ve 3959
+121 3960
+赈 3961
+恺 3962
+瞎 3963
+蝙 3964
+1921 3965
+枸 3966
+萱 3967
+颚 3968
+憩 3969
+秽 3970
+秸 3971
+拷 3972
+阑 3973
+貂 3974
+粱 3975
+煲 3976
+隘 3977
+暧 3978
+惕 3979
+沽 3980
+time 3981
+菠 3982
+1911 3983
+趟 3984
+磋 3985
+偕 3986
+涕 3987
+邸 3988
+so 3989
+踞 3990
+惫 3991
+122 3992
+阪 3993
+鞠 3994
+饺 3995
+汞 3996
+颍 3997
+氰 3998
+屹 3999
+蛟 4000
+跻 4001
+哟 4002
+have 4003
+126 4004
+臼 4005
+熄 4006
+绛 4007
+弩 4008
+褪 4009
+117 4010
+渎 4011
+亟 4012
+匮 4013
+撇 4014
+internet 4015
+霆 4016
+攒 4017
+舵 4018
+扛 4019
+彤 4020
+nba 4021
+蛤 4022
+婢 4023
+偃 4024
+胫 4025
+姥 4026
+睑 4027
+love 4028
+iso 4029
+pk 4030
+诙 4031
+what 4032
+诲 4033
+锭 4034
+悚 4035
+扒 4036
+洱 4037
+劾 4038
+惰 4039
+篡 4040
+瓯 4041
+徇 4042
+铀 4043
+骋 4044
+flash 4045
+1918 4046
+out 4047
+筷 4048
+渚 4049
+踵 4050
+俨 4051
+ceo 4052
+榻 4053
+糜 4054
+捻 4055
+釜 4056
+哩 4057
+萤 4058
+270 4059
+蛹 4060
+隽 4061
+垮 4062
+鸠 4063
+鸥 4064
+漕 4065
+瑙 4066
+礴 4067
+憧 4068
+殴 4069
+潼 4070
+悯 4071
+砺 4072
+拽 4073
+钗 4074
+ct 4075
+酣 4076
+镂 4077
+mp3 4078
+膺 4079
+楞 4080
+竺 4081
+迂 4082
+嫣 4083
+忱 4084
+cad 4085
+哄 4086
+疣 4087
+鹦 4088
+1700 4089
+枭 4090
+憬 4091
+疱 4092
+will 4093
+婪 4094
+沮 4095
+1914 4096
+怅 4097
+119 4098
+筱 4099
+扉 4100
+瞰 4101
+linux 4102
+旌 4103
+蔑 4104
+铠 4105
+瀛 4106
+vip 4107
+琥 4108
+750 4109
+127 4110
+懵 4111
+谴 4112
+捍 4113
+蟾 4114
+漩 4115
+1913 4116
+拣 4117
+汴 4118
+university 4119
+刨 4120
+叱 4121
+曜 4122
+妞 4123
+澎 4124
+镑 4125
+翎 4126
+瞪 4127
+sh 4128
+倔 4129
+芍 4130
+璞 4131
+瓮 4132
+驹 4133
+芷 4134
+寐 4135
+擂 4136
+丕 4137
+蟠 4138
+诃 4139
+悸 4140
+亘 4141
+溴 4142
+宸 4143
+廿 4144
+恃 4145
+棣 4146
+1917 4147
+荼 4148
+筠 4149
+羚 4150
+慑 4151
+唉 4152
+纣 4153
+麼 4154
+蹦 4155
+锄 4156
+145 4157
+international 4158
+124 4159
+淆 4160
+甙 4161
+132 4162
+蚜 4163
+椿 4164
+禺 4165
+绯 4166
+冗 4167
+168 4168
+葩 4169
+厝 4170
+媲 4171
+蒿 4172
+痪 4173
+650 4174
+菁 4175
+炊 4176
+wifi 4177
+俑 4178
+new 4179
+讥 4180
+min 4181
+桀 4182
+祺 4183
+129 4184
+吡 4185
+迩 4186
+do 4187
+john 4188
+箔 4189
+皿 4190
+缎 4191
+萦 4192
+剃 4193
+霓 4194
+酝 4195
+mg 4196
+诰 4197
+茉 4198
+just 4199
+get 4200
+飙 4201
+湍 4202
+蜥 4203
+箕 4204
+蘸 4205
+550 4206
+4500 4207
+柬 4208
+韭 4209
+溥 4210
+but 4211
+熠 4212
+鹉 4213
+咐 4214
+剌 4215
+138 4216
+悖 4217
+瞿 4218
+槟 4219
+娩 4220
+闾 4221
+pvc 4222
+遴 4223
+咫 4224
+20000 4225
+孺 4226
+彷 4227
+茬 4228
+211 4229
+蓟 4230
+li 4231
+if 4232
+憨 4233
+袅 4234
+佬 4235
+炯 4236
+erp 4237
+1910 4238
+啶 4239
+昙 4240
+蚩 4241
+136 4242
+痔 4243
+蕨 4244
+瓢 4245
+夔 4246
+毡 4247
+赃 4248
+鳖 4249
+沅 4250
+wang 4251
+go 4252
+饷 4253
+165 4254
+臧 4255
+掖 4256
+褚 4257
+羹 4258
+ic 4259
+勐 4260
+tv 4261
+谚 4262
+畦 4263
+眨 4264
+贻 4265
+攸 4266
+涎 4267
+弑 4268
+咎 4269
+铂 4270
+瑛 4271
+1905 4272
+矗 4273
+虱 4274
+more 4275
+133 4276
+秤 4277
+谟 4278
+漱 4279
+俸 4280
+夙 4281
+1915 4282
+br 4283
+game 4284
+雉 4285
+螨 4286
+恣 4287
+斛 4288
+175 4289
+谙 4290
+隍 4291
+131 4292
+奄 4293
+480 4294
+yy 4295
+1916 4296
+壕 4297
+髻 4298
+155 4299
+鄱 4300
+嘶 4301
+磕 4302
+濡 4303
+赘 4304
+荞 4305
+讹 4306
+猕 4307
+痞 4308
+鬓 4309
+铮 4310
+腱 4311
+幡 4312
+榭 4313
+爻 4314
+5m 4315
+涓 4316
+晤 4317
+咕 4318
+惭 4319
+钼 4320
+匕 4321
+ok 4322
+撮 4323
+庾 4324
+笠 4325
+窘 4326
+癖 4327
+365 4328
+垛 4329
+窒 4330
+畲 4331
+甬 4332
+彗 4333
+缨 4334
+湮 4335
+寮 4336
+et 4337
+衅 4338
+谪 4339
+156 4340
+绫 4341
+9000 4342
+152 4343
+兖 4344
+疽 4345
+磐 4346
+380 4347
+菏 4348
+沱 4349
+骁 4350
+嫔 4351
+盂 4352
+娆 4353
+钊 4354
+蟒 4355
+忏 4356
+谤 4357
+148 4358
+137 4359
+server 4360
+2200 4361
+晟 4362
+ng 4363
+15000 4364
+google 4365
+痈 4366
+耆 4367
+谧 4368
+簪 4369
+134 4370
+ml 4371
+疟 4372
+扈 4373
+脍 4374
+琛 4375
+咋 4376
+胄 4377
+142 4378
+144 4379
+葆 4380
+轶 4381
+桢 4382
+973 4383
+攘 4384
+was 4385
+邕 4386
+拧 4387
+茯 4388
+205 4389
+摒 4390
+1908 4391
+intel 4392
+傀 4393
+祚 4394
+嘟 4395
+帼 4396
+1906 4397
+wto 4398
+筵 4399
+when 4400
+馒 4401
+疚 4402
+璇 4403
+砧 4404
+merge 4405
+槃 4406
+microsoft 4407
+犷 4408
+exe 4409
+腓 4410
+煜 4411
+弋 4412
+疸 4413
+濑 4414
+310 4415
+201 4416
+麝 4417
+嗟 4418
+忻 4419
+愣 4420
+facebook 4421
+斓 4422
+吝 4423
+咧 4424
+矾 4425
+愫 4426
+151 4427
+158 4428
+漪 4429
+珂 4430
+rna 4431
+逞 4432
+146 4433
+206 4434
+糠 4435
+璐 4436
+藓 4437
+昕 4438
+妩 4439
+屌 4440
+疵 4441
+excel 4442
+嘘 4443
+he 4444
+plc 4445
+袂 4446
+2400 4447
+139 4448
+稃 4449
+剁 4450
+侏 4451
+掐 4452
+猾 4453
+匍 4454
+2800 4455
+坳 4456
+黜 4457
+邺 4458
+闫 4459
+猥 4460
+湃 4461
+斟 4462
+癣 4463
+1904 4464
+185 4465
+匐 4466
+粳 4467
+sql 4468
+330 4469
+141 4470
+cp 4471
+1909 4472
+叟 4473
+俾 4474
+儡 4475
+莒 4476
+12000 4477
+骥 4478
+跤 4479
+耙 4480
+矜 4481
+翱 4482
+zhang 4483
+ms 4484
+赡 4485
+1907 4486
+浣 4487
+栾 4488
+拈 4489
+science 4490
+420 4491
+螟 4492
+aaa 4493
+桧 4494
+坍 4495
+睢 4496
+趴 4497
+id 4498
+伎 4499
+2100 4500
+婺 4501
+霹 4502
+痊 4503
+膊 4504
+眯 4505
+豌 4506
+202 4507
+驮 4508
+骈 4509
+850 4510
+iii 4511
+嶂 4512
+淞 4513
+143 4514
+腮 4515
+髅 4516
+炀 4517
+啄 4518
+亳 4519
+麾 4520
+147 4521
+筐 4522
+叨 4523
+徨 4524
+跷 4525
+ac 4526
+楂 4527
+郴 4528
+绶 4529
+hp 4530
+羔 4531
+xp 4532
+ieee 4533
+咤 4534
+now 4535
+there 4536
+靳 4537
+they 4538
+屎 4539
+雳 4540
+瘘 4541
+蹬 4542
+2300 4543
+惮 4544
+acid 4545
+涪 4546
+阖 4547
+煽 4548
+蹊 4549
+225 4550
+栉 4551
+153 4552
+俟 4553
+涸 4554
+辫 4555
+锢 4556
+佟 4557
+176 4558
+皎 4559
+cctv 4560
+啮 4561
+钰 4562
+螂 4563
+dc 4564
+啪 4565
+绷 4566
+204 4567
+闰 4568
+畿 4569
+2d 4570
+覃 4571
+2600 4572
+惘 4573
+贰 4574
+154 4575
+碉 4576
+卞 4577
+酐 4578
+枷 4579
+葺 4580
+芪 4581
+207 4582
+蕙 4583
+192 4584
+咚 4585
+籁 4586
+pro 4587
+钴 4588
+162 4589
+冽 4590
+玮 4591
+骷 4592
+啃 4593
+焖 4594
+猝 4595
+榈 4596
+滁 4597
+拮 4598
+跗 4599
+讷 4600
+蝗 4601
+208 4602
+蠡 4603
+world 4604
+烨 4605
+been 4606
+hd 4607
+gmp 4608
+256 4609
+脯 4610
+歙 4611
+泠 4612
+刍 4613
+掳 4614
+pe 4615
+his 4616
+僳 4617
+340 4618
+1902 4619
+螯 4620
+胳 4621
+髦 4622
+粽 4623
+戾 4624
+祜 4625
+178 4626
+186 4627
+岷 4628
+懋 4629
+馥 4630
+昵 4631
+踊 4632
+湄 4633
+郢 4634
+斡 4635
+迢 4636
+ce 4637
+photoshop 4638
+嗪 4639
+about 4640
+裨 4641
+1903 4642
+羧 4643
+膈 4644
+翊 4645
+lcd 4646
+鲫 4647
+163 4648
+螃 4649
+沓 4650
+疝 4651
+笈 4652
+ktv 4653
+榔 4654
+157 4655
+诘 4656
+autocad 4657
+195 4658
+颉 4659
+蛀 4660
+鸢 4661
+焯 4662
+囧 4663
+make 4664
+梆 4665
+npc 4666
+潞 4667
+戛 4668
+see 4669
+system 4670
+149 4671
+佗 4672
+艮 4673
+chinese 4674
+let 4675
+霾 4676
+鬟 4677
+215 4678
+net 4679
+玖 4680
+1898 4681
+腭 4682
+喔 4683
+172 4684
+罔 4685
+佥 4686
+粑 4687
+visual 4688
+舷 4689
+泯 4690
+m2 4691
+198 4692
+has 4693
+203 4694
+sd 4695
+泓 4696
+炜 4697
+谗 4698
+烬 4699
+跆 4700
+rpg 4701
+傩 4702
+飓 4703
+浔 4704
+钤 4705
+惚 4706
+胭 4707
+踝 4708
+镯 4709
+ep 4710
+221 4711
+臆 4712
+196 4713
+蜚 4714
+揪 4715
+觞 4716
+皈 4717
+dj 4718
+183 4719
+api 4720
+迸 4721
+匝 4722
+筏 4723
+167 4724
+醴 4725
+黍 4726
+洮 4727
+滦 4728
+侬 4729
+甾 4730
+290 4731
+way 4732
+3200 4733
+188 4734
+diy 4735
+2cm 4736
+com 4737
+澧 4738
+阈 4739
+袱 4740
+迤 4741
+衮 4742
+166 4743
+濂 4744
+娑 4745
+砥 4746
+砷 4747
+铨 4748
+缜 4749
+箴 4750
+30000 4751
+逵 4752
+猖 4753
+159 4754
+蛰 4755
+箍 4756
+侥 4757
+2mm 4758
+搂 4759
+纨 4760
+裱 4761
+枋 4762
+嫦 4763
+敝 4764
+挝 4765
+贲 4766
+潦 4767
+235 4768
+撩 4769
+惺 4770
+铰 4771
+f1 4772
+忒 4773
+咆 4774
+哆 4775
+莅 4776
+164 4777
+炕 4778
+抨 4779
+涿 4780
+龈 4781
+猷 4782
+got 4783
+b1 4784
+182 4785
+2m 4786
+212 4787
+遒 4788
+缥 4789
+vs 4790
+捂 4791
+俐 4792
+la 4793
+瘙 4794
+搐 4795
+牍 4796
+isbn 4797
+馍 4798
+our 4799
+痿 4800
+袤 4801
+峥 4802
+184 4803
+栎 4804
+罹 4805
+燎 4806
+喵 4807
+209 4808
+1901 4809
+璜 4810
+飒 4811
+蔼 4812
+珞 4813
+澹 4814
+奘 4815
+岖 4816
+芡 4817
+簸 4818
+杵 4819
+甥 4820
+骊 4821
+216 4822
+悴 4823
+173 4824
+惆 4825
+5mg 4826
+殃 4827
+1895 4828
+呃 4829
+161 4830
+5g 4831
+祗 4832
+3600 4833
+髋 4834
+169 4835
+liu 4836
+who 4837
+幔 4838
+down 4839
+榛 4840
+犊 4841
+霁 4842
+芮 4843
+520 4844
+牒 4845
+佰 4846
+her 4847
+狈 4848
+薨 4849
+co 4850
+吩 4851
+鳝 4852
+嵘 4853
+濠 4854
+呤 4855
+纫 4856
+3mm 4857
+檄 4858
+214 4859
+浜 4860
+370 4861
+189 4862
+缙 4863
+缢 4864
+煦 4865
+蓦 4866
+揖 4867
+拴 4868
+缈 4869
+218 4870
+褥 4871
+铿 4872
+312 4873
+燮 4874
+life 4875
+锵 4876
+174 4877
+荥 4878
+187 4879
+忿 4880
+4s 4881
+僖 4882
+婶 4883
+171 4884
+chen 4885
+芾 4886
+镐 4887
+痣 4888
+research 4889
+眈 4890
+460 4891
+祇 4892
+邈 4893
+翳 4894
+碣 4895
+遨 4896
+鳗 4897
+诂 4898
+never 4899
+岫 4900
+焘 4901
+3cm 4902
+co2 4903
+茱 4904
+tcp 4905
+only 4906
+255 4907
+gsm 4908
+say 4909
+洵 4910
+晁 4911
+right 4912
+噢 4913
+she 4914
+over 4915
+偈 4916
+旖 4917
+david 4918
+181 4919
+232 4920
+蚓 4921
+柘 4922
+珐 4923
+遽 4924
+岌 4925
+桅 4926
+213 4927
+唔 4928
+222 4929
+鄞 4930
+雹 4931
+michael 4932
+驸 4933
+苻 4934
+恻 4935
+鬃 4936
+玑 4937
+磬 4938
+崂 4939
+304 4940
+祉 4941
+荤 4942
+淼 4943
+560 4944
+264 4945
+肱 4946
+呗 4947
+pp 4948
+b2 4949
+骡 4950
+囱 4951
+10cm 4952
+佞 4953
+back 4954
+1890 4955
+226 4956
+耒 4957
+伫 4958
+嚷 4959
+粼 4960
+aa 4961
+歆 4962
+佃 4963
+旎 4964
+惋 4965
+殁 4966
+杳 4967
+their 4968
+阡 4969
+red 4970
+畈 4971
+蔺 4972
+os 4973
+177 4974
+map 4975
+巽 4976
+cbd 4977
+昱 4978
+啰 4979
+吠 4980
+179 4981
+199 4982
+嗔 4983
+涮 4984
+238 4985
+奂 4986
+1896 4987
+撷 4988
+301 4989
+袒 4990
+720 4991
+爰 4992
+捶 4993
+赭 4994
+蜓 4995
+姗 4996
+蔻 4997
+垠 4998
+193 4999
+gis 5000
+噻 5001
+ab 5002
+峒 5003
+皙 5004
+want 5005
+245 5006
+憔 5007
+帚 5008
+office 5009
+xx 5010
+杷 5011
+蟆 5012
+iso14001 5013
+觐 5014
+钒 5015
+岙 5016
+2700 5017
+1899 5018
+栀 5019
+幄 5020
+啧 5021
+癜 5022
+擀 5023
+轲 5024
+铆 5025
+them 5026
+讴 5027
+樽 5028
+霏 5029
+mtv 5030
+肮 5031
+枳 5032
+骞 5033
+诧 5034
+瘢 5035
+虬 5036
+拗 5037
+play 5038
+219 5039
+蕲 5040
+316 5041
+茁 5042
+唆 5043
+technology 5044
+word 5045
+沭 5046
+毂 5047
+蛎 5048
+芊 5049
+銮 5050
+瞥 5051
+呱 5052
+223 5053
+羿 5054
+吒 5055
+傥 5056
+髯 5057
+濯 5058
+蜻 5059
+皴 5060
+802 5061
+430 5062
+邳 5063
+燧 5064
+1860 5065
+獭 5066
+垭 5067
+祟 5068
+217 5069
+虢 5070
+how 5071
+枇 5072
+abs 5073
+鹫 5074
+194 5075
+颞 5076
+1894 5077
+333 5078
+皑 5079
+脲 5080
+197 5081
+舔 5082
+魇 5083
+霭 5084
+org 5085
+坨 5086
+郧 5087
+baby 5088
+椽 5089
+舫 5090
+228 5091
+oh 5092
+305 5093
+荠 5094
+琊 5095
+溟 5096
+1897 5097
+煨 5098
+265 5099
+谯 5100
+粲 5101
+罂 5102
+gonna 5103
+屉 5104
+佯 5105
+郦 5106
+亵 5107
+诽 5108
+芩 5109
+嵇 5110
+蚤 5111
+哒 5112
+315 5113
+啬 5114
+ain 5115
+嚎 5116
+玥 5117
+twitter 5118
+191 5119
+隼 5120
+唢 5121
+铛 5122
+cause 5123
+壅 5124
+藜 5125
+won 5126
+吱 5127
+rom 5128
+楣 5129
+璟 5130
+锆 5131
+憋 5132
+罡 5133
+al 5134
+咙 5135
+1850 5136
+腈 5137
+oslash 5138
+job 5139
+233 5140
+廪 5141
+堑 5142
+into 5143
+诩 5144
+b2c 5145
+溧 5146
+鹑 5147
+讫 5148
+哌 5149
+铢 5150
+蜴 5151
+1ml 5152
+稹 5153
+噜 5154
+镉 5155
+224 5156
+愕 5157
+桁 5158
+晔 5159
+琰 5160
+陲 5161
+疙 5162
+667 5163
+崮 5164
+need 5165
+540 5166
+8mm 5167
+html 5168
+颛 5169
+through 5170
+asp 5171
+桡 5172
+钜 5173
+580 5174
+take 5175
+谑 5176
+仞 5177
+咦 5178
+珪 5179
+揍 5180
+鱿 5181
+阉 5182
+3800 5183
+瘩 5184
+410 5185
+槌 5186
+滓 5187
+茴 5188
+tft 5189
+泮 5190
+涣 5191
+atm 5192
+pci 5193
+柞 5194
+渥 5195
+飨 5196
+孪 5197
+沔 5198
+谲 5199
+桉 5200
+vcd 5201
+慵 5202
+318 5203
+oem 5204
+other 5205
+俚 5206
+paul 5207
+跖 5208
+纭 5209
+恙 5210
+which 5211
+fi 5212
+佘 5213
+236 5214
+荃 5215
+咄 5216
+鞅 5217
+叁 5218
+james 5219
+恽 5220
+m3 5221
+253 5222
+炔 5223
+萘 5224
+钺 5225
+6500 5226
+1880 5227
+ccd 5228
+楫 5229
+塬 5230
+钡 5231
+琮 5232
+苄 5233
+950 5234
+325 5235
+275 5236
+1g 5237
+day 5238
+o2o 5239
+960 5240
+music 5241
+骰 5242
+偎 5243
+粕 5244
+amd 5245
+咔 5246
+鹄 5247
+瓒 5248
+阆 5249
+捅 5250
+嬴 5251
+adobe 5252
+箨 5253
+name 5254
+390 5255
+680 5256
+640 5257
+氦 5258
+倜 5259
+b2b 5260
+觊 5261
+xml 5262
+婕 5263
+229 5264
+jar 5265
+锑 5266
+撬 5267
+chem 5268
+掰 5269
+嗷 5270
+5500 5271
+1cm 5272
+饯 5273
+蓓 5274
+234 5275
+good 5276
+鼬 5277
+spa 5278
+佤 5279
+5a 5280
+ss 5281
+蚯 5282
+挞 5283
+臾 5284
+where 5285
+atp 5286
+227 5287
+嶙 5288
+幂 5289
+饬 5290
+闱 5291
+live 5292
+high 5293
+煅 5294
+嘧 5295
+1mm 5296
+蹭 5297
+sun 5298
+abc 5299
+瞭 5300
+顼 5301
+箐 5302
+here 5303
+徉 5304
+231 5305
+骜 5306
+302 5307
+嗨 5308
+邛 5309
+庑 5310
+柩 5311
+饕 5312
+俎 5313
+4mm 5314
+15g 5315
+嘌 5316
+50000 5317
+颏 5318
+cssci 5319
+椁 5320
+崧 5321
+锉 5322
+籼 5323
+1870 5324
+狞 5325
+弁 5326
+6mm 5327
+羯 5328
+踹 5329
+糅 5330
+248 5331
+1840 5332
+砼 5333
+263 5334
+嫖 5335
+tmp 5336
+252 5337
+mac 5338
+285 5339
+豉 5340
+啉 5341
+榷 5342
+嘈 5343
+en 5344
+俪 5345
+痂 5346
+308 5347
+inf 5348
+630 5349
+儋 5350
+4a 5351
+芎 5352
+ai 5353
+man 5354
+繇 5355
+1889 5356
+bt 5357
+239 5358
+meta 5359
+蹇 5360
+242 5361
+530 5362
+诋 5363
+bbc 5364
+煸 5365
+峋 5366
+淙 5367
+324 5368
+management 5369
+1885 5370
+泱 5371
+徜 5372
+crm 5373
+4cm 5374
+free 5375
+汩 5376
+纥 5377
+246 5378
+蝼 5379
+囿 5380
+uv 5381
+暹 5382
+谆 5383
+蹂 5384
+鞣 5385
+3c 5386
+mr 5387
+螳 5388
+cs 5389
+馗 5390
+幺 5391
+鞑 5392
+贽 5393
+268 5394
+istp 5395
+243 5396
+漯 5397
+237 5398
+牦 5399
+淖 5400
+engineering 5401
+dr 5402
+囤 5403
+than 5404
+gprs 5405
+sp 5406
+440 5407
+晗 5408
+1888 5409
+258 5410
+忡 5411
+懊 5412
+呋 5413
+埂 5414
+pcb 5415
+307 5416
+first 5417
+321 5418
+robert 5419
+鲈 5420
+sup2 5421
+阕 5422
+3m 5423
+幌 5424
+cg 5425
+303 5426
+鳅 5427
+勰 5428
+find 5429
+8cm 5430
+萸 5431
+剽 5432
+蚝 5433
+wi 5434
+绔 5435
+pdf 5436
+1250 5437
+262 5438
+php 5439
+辇 5440
+10mg 5441
+use 5442
+ie 5443
+麋 5444
+1884 5445
+陟 5446
+宥 5447
+oracle 5448
+锺 5449
+喽 5450
+620 5451
+1892 5452
+1893 5453
+淅 5454
+熵 5455
+荨 5456
+247 5457
+忤 5458
+american 5459
+266 5460
+seo 5461
+轭 5462
+嗦 5463
+荪 5464
+also 5465
+骠 5466
+鹘 5467
+p2p 5468
+4g 5469
+聿 5470
+绾 5471
+诶 5472
+985 5473
+怆 5474
+244 5475
+喋 5476
+恸 5477
+湟 5478
+睨 5479
+翦 5480
+fe 5481
+蜈 5482
+1875 5483
+褂 5484
+娼 5485
+1886 5486
+羸 5487
+觎 5488
+470 5489
+瘁 5490
+306 5491
+蚣 5492
+呻 5493
+241 5494
+1882 5495
+昶 5496
+谶 5497
+猬 5498
+荻 5499
+school 5500
+286 5501
+酗 5502
+unit 5503
+肄 5504
+躏 5505
+膑 5506
+288 5507
+2g 5508
+嗡 5509
+273 5510
+iv 5511
+cam 5512
+510 5513
+庠 5514
+崽 5515
+254 5516
+搪 5517
+pcr 5518
+胯 5519
+309 5520
+铉 5521
+峤 5522
+郯 5523
+藐 5524
+舂 5525
+come 5526
+蓼 5527
+some 5528
+薏 5529
+窿 5530
+羣 5531
+氽 5532
+徕 5533
+冼 5534
+rs 5535
+阂 5536
+欤 5537
+殒 5538
+窈 5539
+脘 5540
+780 5541
+篝 5542
+yang 5543
+1861 5544
+3300 5545
+iso9000 5546
+麸 5547
+砭 5548
+max 5549
+砰 5550
+骶 5551
+豺 5552
+lg 5553
+窠 5554
+獒 5555
+think 5556
+腴 5557
+苕 5558
+any 5559
+its 5560
+缇 5561
+骅 5562
+劭 5563
+college 5564
+卅 5565
+ups 5566
+揆 5567
+垅 5568
+na 5569
+6cm 5570
+琏 5571
+镗 5572
+苜 5573
+胛 5574
+1881 5575
+black 5576
+珏 5577
+吮 5578
+抠 5579
+搔 5580
+276 5581
+rock 5582
+251 5583
+槎 5584
+4200 5585
+323 5586
+掣 5587
+pet 5588
+1887 5589
+ap 5590
+琨 5591
+餮 5592
+375 5593
+舛 5594
+give 5595
+si 5596
+痤 5597
+us 5598
+311 5599
+278 5600
+埭 5601
+english 5602
+peter 5603
+1891 5604
+820 5605
+胪 5606
+喹 5607
+妲 5608
+婀 5609
+帙 5610
+10g 5611
+oa 5612
+7500 5613
+箩 5614
+灏 5615
+霎 5616
+logo 5617
+袄 5618
+dsp 5619
+bl 5620
+镭 5621
+蓿 5622
+power 5623
+long 5624
+墉 5625
+too 5626
+嵊 5627
+1862 5628
+girl 5629
+堇 5630
+king 5631
+蟋 5632
+610 5633
+叽 5634
+249 5635
+钎 5636
+30cm 5637
+fm 5638
+録 5639
+group 5640
+1883 5641
+郓 5642
+瘴 5643
+vol 5644
+丶 5645
+呦 5646
+邬 5647
+頫 5648
+272 5649
+馁 5650
+hiv 5651
+鄢 5652
+257 5653
+1876 5654
+ordm 5655
+蛭 5656
+322 5657
+愍 5658
+锲 5659
+槿 5660
+珈 5661
+best 5662
+4800 5663
+mri 5664
+1080 5665
+fda 5666
+10mm 5667
+261 5668
+nt 5669
+660 5670
+super 5671
+1m 5672
+center 5673
+ui 5674
+335 5675
+蜃 5676
+298 5677
+拎 5678
+鎏 5679
+裟 5680
+沏 5681
+np 5682
+螭 5683
+7mm 5684
+觑 5685
+墒 5686
+捺 5687
+轸 5688
+micro 5689
+榫 5690
+based 5691
+319 5692
+怔 5693
+ram 5694
+618 5695
+昀 5696
+even 5697
+泷 5698
+1864 5699
+ca 5700
+凫 5701
+唠 5702
+狰 5703
+鲛 5704
+氐 5705
+呛 5706
+绀 5707
+碛 5708
+茏 5709
+盅 5710
+蟀 5711
+洙 5712
+off 5713
+訇 5714
+蠹 5715
+auml 5716
+dos 5717
+20cm 5718
+267 5719
+棂 5720
+18000 5721
+蚴 5722
+篾 5723
+two 5724
+靛 5725
+暄 5726
+show 5727
+1868 5728
+泞 5729
+cdma 5730
+mark 5731
+vc 5732
+洄 5733
+赓 5734
+麽 5735
+25000 5736
+篓 5737
+孑 5738
+860 5739
+烩 5740
+980 5741
+design 5742
+颢 5743
+钣 5744
+var 5745
+髂 5746
+蹴 5747
+wanna 5748
+筮 5749
+蝌 5750
+醮 5751
+home 5752
+菖 5753
+fun 5754
+cmos 5755
+獗 5756
+friends 5757
+business 5758
+岘 5759
+570 5760
+鼐 5761
+1865 5762
+姣 5763
+national 5764
+1874 5765
+蟑 5766
+袈 5767
+葶 5768
+掬 5769
+most 5770
+vga 5771
+emba 5772
+躇 5773
+30g 5774
+鹌 5775
+city 5776
+踌 5777
+282 5778
+钹 5779
+蚪 5780
+颧 5781
+001 5782
+13000 5783
+鹳 5784
+274 5785
+km 5786
+345 5787
+1050 5788
+stop 5789
+328 5790
+then 5791
+鲲 5792
+驷 5793
+潴 5794
+295 5795
+386 5796
+焱 5797
+稔 5798
+悌 5799
+mpeg 5800
+st 5801
+suv 5802
+vista 5803
+a1 5804
+vi 5805
+283 5806
+help 5807
+basic 5808
+唏 5809
+11000 5810
+苒 5811
+蹙 5812
+house 5813
+heart 5814
+ouml 5815
+281 5816
+氩 5817
+bug 5818
+mobile 5819
+宓 5820
+service 5821
+dll 5822
+綦 5823
+苎 5824
+application 5825
+疃 5826
+methyl 5827
+攫 5828
+rfid 5829
+100g 5830
+287 5831
+掾 5832
+1871 5833
+徭 5834
+490 5835
+舀 5836
+逶 5837
+嗤 5838
+760 5839
+0m 5840
+ge 5841
+1872 5842
+people 5843
+hr 5844
+蜷 5845
+茔 5846
+512 5847
+疳 5848
+迳 5849
+罄 5850
+瓠 5851
+100mg 5852
+讪 5853
+psp 5854
+av 5855
+傈 5856
+ppp 5857
+杲 5858
+灞 5859
+氲 5860
+鬲 5861
+獠 5862
+柒 5863
+骧 5864
+1848 5865
+away 5866
+william 5867
+326 5868
+搀 5869
+珩 5870
+绦 5871
+1879 5872
+嚏 5873
+710 5874
+镛 5875
+喱 5876
+倏 5877
+馋 5878
+茭 5879
+擘 5880
+斫 5881
+284 5882
+1mg 5883
+怂 5884
+hdmi 5885
+唧 5886
+犍 5887
+谩 5888
+赊 5889
+317 5890
+271 5891
+wu 5892
+鬻 5893
+禛 5894
+15cm 5895
+259 5896
+840 5897
+feel 5898
+485 5899
+圻 5900
+10m 5901
+蹶 5902
+5kg 5903
+1877 5904
+1873 5905
+缄 5906
+瘿 5907
+黠 5908
+甑 5909
+矸 5910
+嘀 5911
+il 5912
+蹼 5913
+jack 5914
+lee 5915
+269 5916
+叼 5917
+di 5918
+313 5919
+旻 5920
+auc 5921
+502 5922
+1350 5923
+鹜 5924
+289 5925
+fc 5926
+稗 5927
+336 5928
+999 5929
+association 5930
+many 5931
+293 5932
+雒 5933
+george 5934
+td 5935
+赉 5936
+style 5937
+馔 5938
+颦 5939
+ul 5940
+ld50 5941
+1867 5942
+颔 5943
+掇 5944
+1863 5945
+each 5946
+赅 5947
+桎 5948
+inc 5949
+痧 5950
+dv 5951
+谄 5952
+孛 5953
+笆 5954
+鲶 5955
+铳 5956
+3100 5957
+mc 5958
+tell 5959
+4m 5960
+blue 5961
+327 5962
+299 5963
+bios 5964
+龋 5965
+385 5966
+盱 5967
+笏 5968
+2030 5969
+窕 5970
+苴 5971
+314 5972
+big 5973
+1866 5974
+296 5975
+萋 5976
+355 5977
+辘 5978
+琬 5979
+cu 5980
+梏 5981
+much 5982
+蚧 5983
+3400 5984
+1280 5985
+镳 5986
+24h 5987
+own 5988
+670 5989
+studio 5990
+瞅 5991
+keep 5992
+6g 5993
+ppt 5994
+conference 5995
+around 5996
+information 5997
+睬 5998
+1878 5999
+class 6000
+偌 6001
+鲵 6002
+惦 6003
+1830 6004
+蜍 6005
+mp4 6006
+why 6007
+靼 6008
+1851 6009
+332 6010
+阗 6011
+菟 6012
+黝 6013
+1650 6014
+control 6015
+挈 6016
+嵴 6017
+剡 6018
+358 6019
+楸 6020
+dha 6021
+氤 6022
+m1 6023
+vr 6024
+呎 6025
+珲 6026
+5ml 6027
+馄 6028
+滂 6029
+338 6030
+蹉 6031
+蓑 6032
+锷 6033
+297 6034
+279 6035
+啜 6036
+1644 6037
+sm 6038
+婵 6039
+well 6040
+鬣 6041
+7cm 6042
+钿 6043
+bbs 6044
+晌 6045
+蛆 6046
+隗 6047
+酞 6048
+枞 6049
+352 6050
+work 6051
+always 6052
+9g 6053
+戬 6054
+獾 6055
+镕 6056
+star 6057
+easy 6058
+饨 6059
+娣 6060
+缰 6061
+邾 6062
+334 6063
+8m 6064
+ni 6065
+鹗 6066
+277 6067
+425 6068
+end 6069
+had 6070
+嗒 6071
+苋 6072
+薮 6073
+棹 6074
+type 6075
+richard 6076
+880 6077
+6m 6078
+拄 6079
+air 6080
+埕 6081
+勖 6082
+鹞 6083
+殚 6084
+鲢 6085
+pop 6086
+a4 6087
+1750 6088
+ftp 6089
+16000 6090
+啖 6091
+ad 6092
+沣 6093
+501 6094
+靥 6095
+葭 6096
+诿 6097
+htc 6098
+鸪 6099
+007 6100
+饴 6101
+t1 6102
+疖 6103
+抟 6104
+睽 6105
+770 6106
+access 6107
+tcl 6108
+稞 6109
+吋 6110
+谀 6111
+澍 6112
+杈 6113
+妤 6114
+sata 6115
+part 6116
+峄 6117
+systems 6118
+漉 6119
+40000 6120
+ever 6121
+気 6122
+368 6123
+咲 6124
+qs 6125
+ta 6126
+璘 6127
+ltd 6128
+mol 6129
+media 6130
+萜 6131
+僭 6132
+朐 6133
+742 6134
+1855 6135
+cc 6136
+圜 6137
+癞 6138
+藿 6139
+555 6140
+珉 6141
+isp 6142
+set 6143
+1450 6144
+陉 6145
+him 6146
+僮 6147
+292 6148
+膻 6149
+1853 6150
+薹 6151
+810 6152
+汊 6153
+still 6154
+锗 6155
+昉 6156
+pvp 6157
+猗 6158
+http 6159
+1859 6160
+3700 6161
+strong 6162
+3a 6163
+锶 6164
+real 6165
+跛 6166
+art 6167
+1869 6168
+331 6169
+1368 6170
+嘹 6171
+337 6172
+瓤 6173
+402 6174
+衄 6175
+1856 6176
+1820 6177
+1150 6178
+matlab 6179
+豕 6180
+吆 6181
+腆 6182
+thomas 6183
+a2 6184
+294 6185
+le 6186
+366 6187
+using 6188
+356 6189
+bb 6190
+喆 6191
+smith 6192
+different 6193
+莴 6194
+401 6195
+谌 6196
+ci 6197
+珙 6198
+疥 6199
+kw 6200
+鲑 6201
+405 6202
+玷 6203
+蛔 6204
+砀 6205
+361 6206
+zh 6207
+nasa 6208
+materials 6209
+329 6210
+nature 6211
+1h 6212
+谔 6213
+睥 6214
+ch 6215
+20mg 6216
+2mg 6217
+du 6218
+mail 6219
+data 6220
+every 6221
+蹑 6222
+诒 6223
+逋 6224
+372 6225
+while 6226
+姝 6227
+刈 6228
+婧 6229
+going 6230
+喳 6231
+镞 6232
+铌 6233
+291 6234
+712 6235
+辎 6236
+鹧 6237
+檩 6238
+740 6239
+扪 6240
+10ml 6241
+霰 6242
+ar 6243
+裆 6244
+ol 6245
+嬷 6246
+0mm 6247
+ufo 6248
+charles 6249
+20mm 6250
+tvb 6251
+apple 6252
+刎 6253
+iec 6254
+project 6255
+sbs 6256
+嵋 6257
+342 6258
+690 6259
+悱 6260
+920 6261
+嘤 6262
+jean 6263
+篁 6264
+荸 6265
+瞑 6266
+殓 6267
+搽 6268
+50mg 6269
+343 6270
+橇 6271
+include 6272
+eva 6273
+雎 6274
+弭 6275
+獐 6276
+haccp 6277
+恿 6278
+video 6279
+cf 6280
+vpn 6281
+society 6282
+眦 6283
+730 6284
+铐 6285
+song 6286
+尕 6287
+捎 6288
+诟 6289
+institute 6290
+痨 6291
+cn 6292
+369 6293
+笞 6294
+756 6295
+version 6296
+des 6297
+sns 6298
+趺 6299
+590 6300
+award 6301
+唬 6302
+苣 6303
+css 6304
+lte 6305
+xu 6306
+fbi 6307
+啾 6308
+瘪 6309
+垸 6310
+357 6311
+橹 6312
+after 6313
+濛 6314
+曷 6315
+level 6316
+樾 6317
+very 6318
+汨 6319
+仟 6320
+姒 6321
+1858 6322
+again 6323
+怦 6324
+荏 6325
+tom 6326
+诤 6327
+苡 6328
+吭 6329
+830 6330
+dm 6331
+before 6332
+406 6333
+崆 6334
+氡 6335
+young 6336
+脩 6337
+lan 6338
+胝 6339
+钏 6340
+3ds 6341
+cr 6342
+arm 6343
+pos 6344
+night 6345
+屐 6346
+395 6347
+忐 6348
+彧 6349
+拚 6350
+鏖 6351
+344 6352
+100ml 6353
+525 6354
+孳 6355
+1024 6356
+yu 6357
+忑 6358
+384 6359
+邝 6360
+穰 6361
+403 6362
+摈 6363
+庖 6364
+351 6365
+鸵 6366
+398 6367
+hello 6368
+矽 6369
+354 6370
+鲟 6371
+said 6372
+381 6373
+768 6374
+発 6375
+762 6376
+sap 6377
+1854 6378
+msn 6379
+菅 6380
+book 6381
+353 6382
+true 6383
+339 6384
+javascript 6385
+348 6386
+2900 6387
+圪 6388
+蹋 6389
+衾 6390
+簋 6391
+璎 6392
+367 6393
+噎 6394
+911 6395
+嬗 6396
+346 6397
+肼 6398
+362 6399
+359 6400
+跎 6401
+滟 6402
+little 6403
+4300 6404
+701 6405
+戦 6406
+嵬 6407
+look 6408
+仝 6409
+phys 6410
+club 6411
+惇 6412
+纾 6413
+times 6414
+14000 6415
+炁 6416
+382 6417
+xyz 6418
+number 6419
+ak 6420
+mind 6421
+huang 6422
+闳 6423
+骐 6424
+秣 6425
+眙 6426
+谘 6427
+碓 6428
+iso9002 6429
+疔 6430
+412 6431
+恂 6432
+am 6433
+top 6434
+master 6435
+鳕 6436
+green 6437
+鸱 6438
+int 6439
+爨 6440
+镊 6441
+404 6442
+were 6443
+4600 6444
+em 6445
+better 6446
+钯 6447
+圮 6448
+楽 6449
+堀 6450
+1852 6451
+408 6452
+sat 6453
+1857 6454
+378 6455
+422 6456
+膘 6457
+705 6458
+噗 6459
+347 6460
+start 6461
+486 6462
+锹 6463
+505 6464
+杼 6465
+酊 6466
+same 6467
+376 6468
+white 6469
+挎 6470
+箸 6471
+郗 6472
+垌 6473
+sa 6474
+溏 6475
+martin 6476
+蔫 6477
+偻 6478
+364 6479
+妫 6480
+飚 6481
+625 6482
+601 6483
+辔 6484
+濬 6485
+666 6486
+ds 6487
+瑄 6488
+621 6489
+觚 6490
+5600 6491
+nhk 6492
+415 6493
+express 6494
+铍 6495
+bit 6496
+跚 6497
+9mm 6498
+翕 6499
+煊 6500
+these 6501
+50mm 6502
+gpu 6503
+b6 6504
+hip 6505
+耄 6506
+铋 6507
+篦 6508
+zhou 6509
+阇 6510
+骛 6511
+nvidia 6512
+莪 6513
+吲 6514
+youtube 6515
+唁 6516
+870 6517
+箧 6518
+503 6519
+tm 6520
+8500 6521
+really 6522
+珅 6523
+潋 6524
+迨 6525
+哽 6526
+without 6527
+砦 6528
+model 6529
+缗 6530
+hey 6531
+謇 6532
+呸 6533
+mrna 6534
+垓 6535
+糍 6536
+park 6537
+wap 6538
+璠 6539
+妣 6540
+狎 6541
+攥 6542
+396 6543
+闇 6544
+york 6545
+蛉 6546
+瑁 6547
+joe 6548
+腼 6549
+蹒 6550
+great 6551
+review 6552
+200mg 6553
+chris 6554
+www 6555
+嶷 6556
+online 6557
+莠 6558
+沤 6559
+哚 6560
+475 6561
+遑 6562
+v1 6563
+such 6564
+跺 6565
+膦 6566
+蹿 6567
+unix 6568
+hard 6569
+40cm 6570
+50cm 6571
+nothing 6572
+郫 6573
+zhao 6574
+玳 6575
+ma 6576
+boy 6577
+埚 6578
+url 6579
+432 6580
+network 6581
+aaaa 6582
+衿 6583
+371 6584
+try 6585
+醪 6586
+full 6587
+挹 6588
+raid 6589
+bg 6590
+绡 6591
+汜 6592
+digital 6593
+mb 6594
+c1 6595
+坩 6596
+ccc 6597
+旃 6598
+5200 6599
+607 6600
+itunes 6601
+powerpoint 6602
+鸨 6603
+between 6604
+407 6605
+翈 6606
+1842 6607
+1844 6608
+435 6609
+838 6610
+抡 6611
+chemistry 6612
+team 6613
+party 6614
+die 6615
+晞 6616
+place 6617
+care 6618
+盥 6619
+藁 6620
+蓖 6621
+383 6622
+cv 6623
+臊 6624
+made 6625
+state 6626
+465 6627
+羰 6628
+388 6629
+1620 6630
+sas 6631
+楝 6632
+噱 6633
+ji 6634
+饽 6635
+苌 6636
+soho 6637
+褓 6638
+佶 6639
+mp 6640
+581 6641
+years 6642
+1260 6643
+1680 6644
+hop 6645
+稜 6646
+瞠 6647
+仡 6648
+25mm 6649
+605 6650
+423 6651
+341 6652
+363 6653
+374 6654
+627 6655
+text 6656
+development 6657
+518 6658
+伉 6659
+襁 6660
+ug 6661
+change 6662
+713 6663
+涞 6664
+1849 6665
+蜇 6666
+抿 6667
+瑗 6668
+pda 6669
+418 6670
+un 6671
+line 6672
+958 6673
+孱 6674
+懑 6675
+416 6676
+von 6677
+373 6678
+淦 6679
+赝 6680
+core 6681
+dns 6682
+747 6683
+427 6684
+387 6685
+would 6686
+ipo 6687
+醌 6688
+551 6689
+缫 6690
+蠲 6691
+alt 6692
+嚓 6693
+鲷 6694
+湫 6695
+捋 6696
+1845 6697
+咩 6698
+裏 6699
+avi 6700
+犒 6701
+2050 6702
+墀 6703
+yeah 6704
+god 6705
+445 6706
+lesson 6707
+硐 6708
+蔸 6709
+399 6710
+758 6711
+pu 6712
+computer 6713
+456 6714
+钽 6715
+1847 6716
+麂 6717
+brown 6718
+store 6719
+蒡 6720
+鼹 6721
+绻 6722
+1821 6723
+錾 6724
+仃 6725
+515 6726
+篙 6727
+蕤 6728
+589 6729
+applied 6730
+737 6731
+930 6732
+c3 6733
+1841 6734
+铤 6735
+billboard 6736
+apec 6737
+槁 6738
+牖 6739
+螈 6740
+mary 6741
+俦 6742
+family 6743
+笄 6744
+color 6745
+啻 6746
+対 6747
+jsp 6748
+郤 6749
+next 6750
+iq 6751
+645 6752
+506 6753
+hbv 6754
+闼 6755
+a3 6756
+349 6757
+value 6758
+413 6759
+igg 6760
+411 6761
+426 6762
+醺 6763
+赍 6764
+檗 6765
+usa 6766
+裾 6767
+head 6768
+噫 6769
+掸 6770
+mike 6771
+箓 6772
+usb2 6773
+things 6774
+5800 6775
+5v 6776
+o2 6777
+妪 6778
+乂 6779
+蝈 6780
+砻 6781
+胍 6782
+220v 6783
+392 6784
+cba 6785
+397 6786
+535 6787
+idc 6788
+analysis 6789
+25mg 6790
+蜱 6791
+ti 6792
+2h 6793
+聃 6794
+雠 6795
+碚 6796
+椤 6797
+缯 6798
+昴 6799
+890 6800
+缱 6801
+祎 6802
+der 6803
+缬 6804
+ex 6805
+508 6806
+铙 6807
+cnc 6808
+pentium 6809
+孀 6810
+533 6811
+advanced 6812
+mpa 6813
+yl 6814
+笳 6815
+蘇 6816
+愆 6817
+685 6818
+榉 6819
+old 6820
+氙 6821
+call 6822
+alex 6823
+燹 6824
+撂 6825
+菽 6826
+583 6827
+箬 6828
+蛄 6829
+瘸 6830
+嬛 6831
+495 6832
+橐 6833
+could 6834
+60000 6835
+something 6836
+纡 6837
+刽 6838
+辂 6839
+hong 6840
+377 6841
+law 6842
+蒯 6843
+邨 6844
+1846 6845
+1550 6846
+r2 6847
+1837 6848
+赀 6849
+player 6850
+414 6851
+跸 6852
+phone 6853
+邙 6854
+hold 6855
+rgb 6856
+421 6857
+henry 6858
+2025 6859
+黟 6860
+409 6861
+磴 6862
+1815 6863
+mode 6864
+1843 6865
+闿 6866
+504 6867
+letters 6868
+1780 6869
+428 6870
+垟 6871
+389 6872
+t2 6873
+london 6874
+528 6875
+jpeg 6876
+嵯 6877
+钚 6878
+steve 6879
+跄 6880
+30min 6881
+527 6882
+潸 6883
+h2 6884
+35000 6885
+崴 6886
+eric 6887
+379 6888
+run 6889
+three 6890
+rf 6891
+left 6892
+455 6893
+恁 6894
+open 6895
+楮 6896
+556 6897
+bc 6898
+476 6899
+腧 6900
+458 6901
+plus 6902
+1812 6903
+1839 6904
+胨 6905
+b12 6906
+4d 6907
+芫 6908
+america 6909
+est 6910
+dream 6911
+碴 6912
+隰 6913
+杓 6914
+md 6915
+ya 6916
+global 6917
+436 6918
+15mm 6919
+2ml 6920
+貉 6921
+欹 6922
+sup3 6923
+侑 6924
+ea 6925
+鳜 6926
+910 6927
+ben 6928
+铄 6929
+椴 6930
+昇 6931
+醍 6932
+1020 6933
+798 6934
+midi 6935
+肓 6936
+features 6937
+lc 6938
+brian 6939
+akb48 6940
+缂 6941
+1835 6942
+test 6943
+铡 6944
+light 6945
+978 6946
+s1 6947
+1799 6948
+key 6949
+sim 6950
+1795 6951
+simple 6952
+energy 6953
+蹠 6954
+徂 6955
+west 6956
+725 6957
+body 6958
+豢 6959
+424 6960
+face 6961
+蒽 6962
+lin 6963
+805 6964
+1120 6965
+479 6966
+菡 6967
+bill 6968
+433 6969
+衲 6970
+阚 6971
+believe 6972
+brt 6973
+pa 6974
+last 6975
+芗 6976
+hu 6977
+sam 6978
+wei 6979
+adsl 6980
+602 6981
+mk 6982
+痍 6983
+玠 6984
+1832 6985
+523 6986
+晷 6987
+604 6988
+jj 6989
+468 6990
+淝 6991
+1560 6992
+鄯 6993
+ck 6994
+473 6995
+糗 6996
+耨 6997
+榧 6998
+394 6999
+940 7000
+eq 7001
+498 7002
+used 7003
+sc 7004
+胴 7005
+c2 7006
+蕈 7007
+screen 7008
+镬 7009
+635 7010
+鼾 7011
+431 7012
+education 7013
+wwe 7014
+摭 7015
+鸮 7016
+cl 7017
+5400 7018
+fpga 7019
+恚 7020
+419 7021
+実 7022
+asia 7023
+534 7024
+552 7025
+砝 7026
+100mm 7027
+pid 7028
+741 7029
+珣 7030
+under 7031
+603 7032
+寤 7033
+埙 7034
+mbc 7035
+tc 7036
+xxx 7037
+didn 7038
+478 7039
+mn 7040
+p1 7041
+锏 7042
+simon 7043
+ansi 7044
+438 7045
+hi 7046
+615 7047
+喟 7048
+蘅 7049
+骺 7050
+cell 7051
+捭 7052
+study 7053
+586 7054
+393 7055
+莜 7056
+should 7057
+xi 7058
+缶 7059
+f2 7060
+games 7061
+0g 7062
+1760 7063
+mini 7064
+johnson 7065
+jones 7066
+yes 7067
+锟 7068
+1825 7069
+叵 7070
+cm3 7071
+炷 7072
+1580 7073
+stay 7074
+675 7075
+another 7076
+6800 7077
+鲧 7078
+1736 7079
+ps2 7080
+胼 7081
+517 7082
+査 7083
+岬 7084
+2019 7085
+1640 7086
+rose 7087
+鹂 7088
+牯 7089
+珥 7090
+entertainment 7091
+448 7092
+und 7093
+496 7094
+莼 7095
+software 7096
+970 7097
+邠 7098
+5300 7099
+h1n1 7100
+488 7101
+da 7102
+眇 7103
+卟 7104
+変 7105
+20m 7106
+may 7107
+417 7108
+lady 7109
+galaxy 7110
+4100 7111
+惴 7112
+1789 7113
+846 7114
+801 7115
+渑 7116
+907 7117
+put 7118
+蚱 7119
+gone 7120
+606 7121
+t3 7122
+company 7123
+632 7124
+454 7125
+516 7126
+998 7127
+548 7128
+391 7129
+4700 7130
+瞌 7131
+ide 7132
+瘰 7133
+7200 7134
+佝 7135
+together 7136
+street 7137
+旸 7138
+626 7139
+衽 7140
+郅 7141
+奁 7142
+731 7143
+30mg 7144
+mvp 7145
+1370 7146
+60cm 7147
+12cm 7148
+魑 7149
+1828 7150
+628 7151
+everything 7152
+612 7153
+san 7154
+937 7155
+缛 7156
+2gb 7157
+lu 7158
+angel 7159
+20ml 7160
+576 7161
+颙 7162
+sony 7163
+790 7164
+press 7165
+镫 7166
+hall 7167
+簌 7168
+beautiful 7169
+豇 7170
+711 7171
+453 7172
+pm 7173
+姹 7174
+thing 7175
+442 7176
+邋 7177
+alpha 7178
+leave 7179
+暝 7180
+441 7181
+30mm 7182
+chapter 7183
+507 7184
+100000 7185
+526 7186
+directx 7187
+511 7188
+9cm 7189
+words 7190
+釐 7191
+619 7192
+洹 7193
+444 7194
+frank 7195
+咿 7196
+eyes 7197
+483 7198
+俳 7199
+522 7200
+蜊 7201
+醐 7202
+541 7203
+water 7204
+499 7205
+聩 7206
+non 7207
+bob 7208
+坻 7209
+532 7210
+757 7211
+545 7212
+毽 7213
+oo 7214
+喾 7215
+alone 7216
+scott 7217
+744 7218
+辋 7219
+river 7220
+zhu 7221
+倌 7222
+媪 7223
+蛳 7224
+滹 7225
+哙 7226
+nc 7227
+20g 7228
+阊 7229
+gs 7230
+queen 7231
+趸 7232
+1130 7233
+1645 7234
+祢 7235
+4mg 7236
+1814 7237
+girls 7238
+544 7239
+e1 7240
+籀 7241
+1210 7242
+1573 7243
+徼 7244
+ipv6 7245
+訾 7246
+髁 7247
+1a 7248
+jackson 7249
+砜 7250
+1836 7251
+les 7252
+4gb 7253
+撸 7254
+瓘 7255
+1790 7256
+缁 7257
+镓 7258
+sars 7259
+eps 7260
+519 7261
+sod 7262
+bp 7263
+1810 7264
+year 7265
+縻 7266
+sound 7267
+617 7268
+菀 7269
+1125 7270
+598 7271
+酢 7272
+桠 7273
+466 7274
+emc 7275
+撵 7276
+怏 7277
+429 7278
+1838 7279
+ready 7280
+渌 7281
+546 7282
+taylor 7283
+452 7284
+news 7285
+1180 7286
+568 7287
+2a 7288
+af 7289
+538 7290
+list 7291
+hot 7292
+1380 7293
+etc 7294
+1796 7295
+摞 7296
+mo 7297
+槲 7298
+levels 7299
+ht 7300
+浠 7301
+诜 7302
+魉 7303
+韫 7304
+daniel 7305
+亓 7306
+盤 7307
+pv 7308
+瑭 7309
+魍 7310
+1831 7311
+emi 7312
+襞 7313
+social 7314
+dreamweaver 7315
+爿 7316
+kbs 7317
+565 7318
+613 7319
+990 7320
+浃 7321
+樯 7322
+jb 7323
+讵 7324
+揩 7325
+physics 7326
+耋 7327
+帏 7328
+lng 7329
+崃 7330
+bs 7331
+457 7332
+enough 7333
+shy 7334
+521 7335
+596 7336
+ec 7337
+451 7338
+鸩 7339
+遢 7340
+turn 7341
+臃 7342
+available 7343
+4400 7344
+585 7345
+粿 7346
+1010 7347
+禳 7348
+hand 7349
+439 7350
+536 7351
+桫 7352
+link 7353
+side 7354
+earth 7355
+mx 7356
+髹 7357
+7m 7358
+482 7359
+诳 7360
+472 7361
+1140 7362
+707 7363
+622 7364
+wcdma 7365
+513 7366
+must 7367
+492 7368
+462 7369
+踉 7370
+40mg 7371
+948 7372
+cmax 7373
+郃 7374
+1320 7375
+v2 7376
+542 7377
+email 7378
+493 7379
+嗖 7380
+sup 7381
+讧 7382
+cnn 7383
+446 7384
+碁 7385
+17000 7386
+湎 7387
+30m 7388
+529 7389
+653 7390
+531 7391
+575 7392
+阏 7393
+sr 7394
+united 7395
+pm2 7396
+mt 7397
+媾 7398
+443 7399
+様 7400
+aac 7401
+806 7402
+哔 7403
+舸 7404
+vb 7405
+611 7406
+曩 7407
+821 7408
+gre 7409
+gl 7410
+cisco 7411
+忝 7412
+峁 7413
+掂 7414
+464 7415
+葳 7416
+487 7417
+437 7418
+including 7419
+715 7420
+鄄 7421
+558 7422
+both 7423
+谵 7424
+463 7425
+jim 7426
+608 7427
+m4 7428
+5100 7429
+彊 7430
+锴 7431
+war 7432
+郜 7433
+money 7434
+481 7435
+葖 7436
+1824 7437
+tnt 7438
+蓇 7439
+瓴 7440
+鳟 7441
+橼 7442
+5s 7443
+louis 7444
+434 7445
+鲇 7446
+邗 7447
+el 7448
+犄 7449
+秭 7450
+3900 7451
+records 7452
+view 7453
+chemical 7454
+1001 7455
+1mol 7456
+dance 7457
+668 7458
+dl 7459
+槭 7460
+缵 7461
+que 7462
+624 7463
+rt 7464
+1823 7465
+1805 7466
+005 7467
+1826 7468
+巯 7469
+sgs 7470
+user 7471
+龊 7472
+qc 7473
+狍 7474
+island 7475
+language 7476
+space 7477
+擞 7478
+saint 7479
+2n 7480
+pt 7481
+share 7482
+瞽 7483
+hotel 7484
+christian 7485
+557 7486
+栲 7487
+撅 7488
+2b 7489
+1801 7490
+447 7491
+1822 7492
+瑀 7493
+smt 7494
+hk 7495
+1834 7496
+戢 7497
+825 7498
+50ml 7499
+朓 7500
+逖 7501
+general 7502
+椹 7503
+nm 7504
+洺 7505
+cae 7506
+484 7507
+艏 7508
+wma 7509
+zn 7510
+苁 7511
+single 7512
+599 7513
+c4 7514
+滘 7515
+777 7516
+铧 7517
+侪 7518
+ocirc 7519
+1kg 7520
+684 7521
+豳 7522
+skf 7523
+12mm 7524
+489 7525
+hla 7526
+竦 7527
+貔 7528
+ld 7529
+being 7530
+562 7531
+圄 7532
+van 7533
+gm 7534
+688 7535
+655 7536
+special 7537
+呷 7538
+edition 7539
+1s 7540
+jiang 7541
+131108 7542
+514 7543
+1792 7544
+ncaa 7545
+1833 7546
+旄 7547
+遛 7548
+jr 7549
+program 7550
+656 7551
+467 7552
+ing 7553
+901 7554
+755 7555
+509 7556
+芈 7557
+kong 7558
+rp 7559
+砣 7560
+桷 7561
+audio 7562
+icp 7563
+happy 7564
+龌 7565
+done 7566
+疬 7567
+japan 7568
+ts 7569
+mit 7570
+p2 7571
+524 7572
+looking 7573
+miss 7574
+缟 7575
+582 7576
+洌 7577
+35mm 7578
+494 7579
+grand 7580
+跏 7581
+those 7582
+joseph 7583
+ctrl 7584
+547 7585
+1040 7586
+686 7587
+蝮 7588
+lp 7589
+cod 7590
+菰 7591
+sio2 7592
+txt 7593
+1770 7594
+1060 7595
+帑 7596
+767 7597
+north 7598
+fcc 7599
+怙 7600
+ester 7601
+718 7602
+story 7603
+edi 7604
+634 7605
+1360 7606
+豸 7607
+1660 7608
+lh 7609
+雩 7610
+1230 7611
+magic 7612
+誊 7613
+549 7614
+臬 7615
+4k 7616
+op 7617
+1662 7618
+651 7619
+镣 7620
+箇 7621
+616 7622
+title 7623
+sciences 7624
+25cm 7625
+踱 7626
+s2 7627
+t4 7628
+钍 7629
+648 7630
+100m 7631
+543 7632
+588 7633
+苫 7634
+554 7635
+蝽 7636
+r1 7637
+3mg 7638
+amino 7639
+1776 7640
+浯 7641
+609 7642
+772 7643
+ca2 7644
+vlan 7645
+469 7646
+500mg 7647
+単 7648
+road 7649
+亶 7650
+636 7651
+metal 7652
+device 7653
+40mm 7654
+囹 7655
+穑 7656
+1730 7657
+佻 7658
+1818 7659
+绌 7660
+12g 7661
+537 7662
+诔 7663
+pve 7664
+autodesk 7665
+477 7666
+v8 7667
+ray 7668
+gp 7669
+span 7670
+gc 7671
+size 7672
+716 7673
+鹬 7674
+ssl 7675
+crt 7676
+1670 7677
+925 7678
+髌 7679
+pn 7680
+1127 7681
+702 7682
+658 7683
+services 7684
+support 7685
+1802 7686
+蒌 7687
+coming 7688
+experience 7689
+nbc 7690
+鳏 7691
+631 7692
+638 7693
+ace 7694
+0cm 7695
+ems 7696
+9001 7697
+殄 7698
+yen 7699
+soc 7700
+ethyl 7701
+怛 7702
+tf 7703
+筌 7704
+刳 7705
+studies 7706
+theory 7707
+1030 7708
+578 7709
+radio 7710
+翮 7711
+卍 7712
+畹 7713
+471 7714
+704 7715
+because 7716
+1610 7717
+箜 7718
+save 7719
+燔 7720
+赳 7721
+553 7722
+1809 7723
+篌 7724
+窨 7725
+翥 7726
+785 7727
+炅 7728
+钕 7729
+lett 7730
+803 7731
+1827 7732
+academy 7733
+ed 7734
+629 7735
+sf 7736
+pr 7737
+hill 7738
+explorer 7739
+future 7740
+food 7741
+莳 7742
+662 7743
+567 7744
+dcs 7745
+忖 7746
+戡 7747
+1086 7748
+1190 7749
+1829 7750
+bad 7751
+es 7752
+15m 7753
+order 7754
+spring 7755
+沢 7756
+south 7757
+497 7758
+025 7759
+move 7760
+狒 7761
+1630 7762
+圉 7763
+abb 7764
+449 7765
+learn 7766
+l0 7767
+d2 7768
+5d 7769
+wav 7770
+琯 7771
+邰 7772
+cis 7773
+quality 7774
+odm 7775
+926 7776
+acta 7777
+root 7778
+smart 7779
+1661 7780
+苾 7781
+cm2 7782
+photos 7783
+l2 7784
+via 7785
+sk 7786
+犸 7787
+623 7788
+邡 7789
+feeling 7790
+572 7791
+郏 7792
+襦 7793
+python 7794
+bmw 7795
+888 7796
+guo 7797
+epa 7798
+williams 7799
+沆 7800
+813 7801
+bot 7802
+read 7803
+function 7804
+wilson 7805
+1723 7806
+enterprise 7807
+玟 7808
+50hz 7809
+s26 7810
+fire 7811
+engineer 7812
+tony 7813
+1819 7814
+濉 7815
+rh 7816
+洎 7817
+莨 7818
+氘 7819
+pb 7820
+咛 7821
+1720 7822
+佺 7823
+1460 7824
+815 7825
+cbs 7826
+腩 7827
+beta 7828
+鳔 7829
+1735 7830
+yan 7831
+1gb 7832
+x2 7833
+剜 7834
+秕 7835
+牝 7836
+芨 7837
+din 7838
+関 7839
+del 7840
+sms 7841
+649 7842
+pal 7843
+1369 7844
+far 7845
+maya 7846
+654 7847
+拊 7848
+812 7849
+595 7850
+竑 7851
+50m 7852
+圹 7853
+close 7854
+eos 7855
+颡 7856
+1420 7857
+6300 7858
+1816 7859
+wrong 7860
+break 7861
+573 7862
+765 7863
+file 7864
+friend 7865
+002 7866
+摺 7867
+683 7868
+nx 7869
+沩 7870
+蜉 7871
+please 7872
+1170 7873
+ro 7874
+6400 7875
+筚 7876
+nick 7877
+acm 7878
+愔 7879
+ati 7880
+point 7881
+肟 7882
+766 7883
+俶 7884
+fast 7885
+ata 7886
+d1 7887
+678 7888
+geforce 7889
+1710 7890
+yahoo 7891
+堃 7892
+绉 7893
+mysql 7894
+1793 7895
+奭 7896
+gap 7897
+iso14000 7898
+uk 7899
+astm 7900
+h2o 7901
+n2 7902
+film 7903
+method 7904
+1804 7905
+罅 7906
+so2 7907
+嗳 7908
+665 7909
+adam 7910
+uc 7911
+蜢 7912
+1806 7913
+1775 7914
+photo 7915
+疠 7916
+474 7917
+image 7918
+200mm 7919
+sure 7920
+561 7921
+帔 7922
+髡 7923
+643 7924
+黥 7925
+1813 7926
+proceedings 7927
+褛 7928
+柰 7929
+beyond 7930
+royal 7931
+else 7932
+eda 7933
+808 7934
+ddr 7935
+gif 7936
+鏊 7937
+l1 7938
+痼 7939
+571 7940
+waiting 7941
+堞 7942
+code 7943
+652 7944
+rss 7945
+learning 7946
+嗝 7947
+461 7948
+beijing 7949
+娉 7950
+566 7951
+577 7952
+708 7953
+1520 7954
+689 7955
+kevin 7956
+human 7957
+661 7958
+539 7959
+875 7960
+1811 7961
+ssci 7962
+6600 7963
+戕 7964
+587 7965
+735 7966
+3s 7967
+铱 7968
+耜 7969
+觥 7970
+867 7971
+镒 7972
+584 7973
+呓 7974
+1522 7975
+904 7976
+case 7977
+1101 7978
+491 7979
+1080p 7980
+history 7981
+蒹 7982
+栱 7983
+im 7984
+564 7985
+f4 7986
+卮 7987
+琚 7988
+salt 7989
+jason 7990
+rohs 7991
+12v 7992
+hydroxy 7993
+逦 7994
+modem 7995
+font 7996
+酩 7997
+蓍 7998
+cry 7999
+65536 8000
+health 8001
+虺 8002
+1798 8003
+tonight 8004
+small 8005
+谠 8006
+1570 8007
+1220 8008
+jane 8009
+against 8010
+597 8011
+751 8012
+459 8013
+bd 8014
+鼋 8015
+焗 8016
+udp 8017
+process 8018
+1070 8019
+1807 8020
+children 8021
+8g 8022
+eb 8023
+62mm 8024
+22000 8025
+add 8026
+1440 8027
+褴 8028
+rm 8029
+25g 8030
+ccedil 8031
+706 8032
+714 8033
+5l 8034
+砒 8035
+赧 8036
+蛏 8037
+709 8038
+蚬 8039
+1530 8040
+瘕 8041
+5h 8042
+559 8043
+jay 8044
+iga 8045
+020 8046
+fall 8047
+scsi 8048
+顗 8049
+isdn 8050
+death 8051
+563 8052
+today 8053
+愠 8054
+dvi 8055
+勣 8056
+wait 8057
+1642 8058
+飕 8059
+徳 8060
+滢 8061
+琇 8062
+鳙 8063
+db 8064
+瞟 8065
+尻 8066
+force 8067
+400mg 8068
+澶 8069
+荽 8070
+舐 8071
+arts 8072
+ha 8073
+east 8074
+lost 8075
+effects 8076
+1628 8077
+album 8078
+harry 8079
+633 8080
+dark 8081
+public 8082
+2250 8083
+soul 8084
+826 8085
+659 8086
+exo 8087
+侂 8088
+733 8089
+se 8090
+黼 8091
+icu 8092
+4h 8093
+market 8094
+潟 8095
+7800 8096
+绂 8097
+瘗 8098
+ngc 8099
+1794 8100
+crazy 8101
+蓥 8102
+竽 8103
+濞 8104
+igm 8105
+scdma 8106
+6200 8107
+cb 8108
+835 8109
+699 8110
+骖 8111
+偁 8112
+bmp 8113
+809 8114
+1270 8115
+oled 8116
+応 8117
+1160 8118
+1621 8119
+锜 8120
+g3 8121
+ova 8122
+cheng 8123
+614 8124
+匏 8125
+thinkpad 8126
+赑 8127
+fps 8128
+create 8129
+kim 8130
+讦 8131
+1480 8132
+诨 8133
+1540 8134
+rev 8135
+1v1 8136
+罘 8137
+fans 8138
+巖 8139
+1740 8140
+ag 8141
+嫘 8142
+1649 8143
+ps3 8144
+908 8145
+颀 8146
+g1 8147
+703 8148
+岿 8149
+v3 8150
+虻 8151
+936 8152
+fl 8153
+c2c 8154
+罴 8155
+environmental 8156
+paris 8157
+594 8158
+hear 8159
+囗 8160
+jump 8161
+communications 8162
+溆 8163
+talk 8164
+噤 8165
+824 8166
+骝 8167
+003 8168
+咂 8169
+695 8170
+728 8171
+e2 8172
+nec 8173
+iptv 8174
+1797 8175
+kelly 8176
+500ml 8177
+锛 8178
+721 8179
+rc 8180
+1808 8181
+ldl 8182
+1240 8183
+槊 8184
+radeon 8185
+676 8186
+啕 8187
+tang 8188
+plant 8189
+50g 8190
+驽 8191
+professional 8192
+凇 8193
+698 8194
+s36 8195
+lord 8196
+search 8197
+alan 8198
+籴 8199
+pd 8200
+1403 8201
+硖 8202
+1791 8203
+816 8204
+1636 8205
+3h 8206
+gsp 8207
+811 8208
+sky 8209
+1632 8210
+铯 8211
+christmas 8212
+怿 8213
+笥 8214
+matter 8215
+574 8216
+噙 8217
+倨 8218
+effect 8219
+647 8220
+779 8221
+1803 8222
+657 8223
+sorry 8224
+awards 8225
+igbt 8226
+pwm 8227
+坭 8228
+醅 8229
+sos 8230
+976 8231
+592 8232
+滏 8233
+10min 8234
+682 8235
+cs3 8236
+悻 8237
+did 8238
+mater 8239
+579 8240
+聒 8241
+1724 8242
+feng 8243
+low 8244
+mhz 8245
+836 8246
+722 8247
+枥 8248
+726 8249
+昺 8250
+bank 8251
+memory 8252
+rap 8253
+975 8254
+663 8255
+ips 8256
+酆 8257
+2kg 8258
+787 8259
+簟 8260
+睇 8261
+轫 8262
+溱 8263
+骢 8264
+榘 8265
+642 8266
+珺 8267
+跹 8268
+677 8269
+series 8270
+nlp 8271
+raquo 8272
+蚶 8273
+stone 8274
+1672 8275
+1817 8276
+1646 8277
+827 8278
+驺 8279
+ko 8280
+security 8281
+perfect 8282
+alexander 8283
+746 8284
+tt 8285
+check 8286
+804 8287
+饧 8288
+15mg 8289
+sir 8290
+moon 8291
+doesn 8292
+591 8293
+inside 8294
+tim 8295
+672 8296
+641 8297
+噼 8298
+儆 8299
+1w 8300
+氚 8301
+646 8302
+哧 8303
+1783 8304
+旒 8305
+鸬 8306
+1648 8307
+夥 8308
+ev 8309
+1688 8310
+score 8311
+standard 8312
+玦 8313
+723 8314
+貅 8315
+揄 8316
+戗 8317
+fx 8318
+938 8319
+璩 8320
+fu 8321
+1654 8322
+剐 8323
+010 8324
+cpi 8325
+垴 8326
+蘼 8327
+hz 8328
+1521 8329
+1067 8330
+727 8331
+ah 8332
+lv 8333
+916 8334
+裒 8335
+639 8336
+han 8337
+躅 8338
+1715 8339
+唳 8340
+form 8341
+second 8342
+嗑 8343
+荦 8344
+674 8345
+霈 8346
+jin 8347
+缦 8348
+啭 8349
+pi 8350
+1788 8351
+rx 8352
+隈 8353
+gao 8354
+sdk 8355
+zheng 8356
+悫 8357
+745 8358
+href 8359
+593 8360
+ngo 8361
+multi 8362
+d3 8363
+彀 8364
+637 8365
+1276 8366
+悭 8367
+found 8368
+jis 8369
+5700 8370
+焓 8371
+1234 8372
+80cm 8373
+磔 8374
+aim 8375
+1778 8376
+蓊 8377
+act 8378
+569 8379
+xiao 8380
+郾 8381
+717 8382
+786 8383
+return 8384
+5min 8385
+1582 8386
+etf 8387
+1590 8388
+action 8389
+1625 8390
+sarah 8391
+yourself 8392
+枧 8393
+鹚 8394
+10kg 8395
+80000 8396
+検 8397
+775 8398
+818 8399
+stephen 8400
+gui 8401
+屃 8402
+644 8403
+9500 8404
+v6 8405
+馑 8406
+wlan 8407
+hs 8408
+2048 8409
+area 8410
+1616 8411
+andrew 8412
+8226 8413
+6mg 8414
+1567 8415
+1763 8416
+1470 8417
+嗲 8418
+pps 8419
+铟 8420
+rca 8421
+pierre 8422
+687 8423
+null 8424
+manager 8425
+738 8426
+sdh 8427
+828 8428
+薤 8429
+60g 8430
+300mg 8431
+jun 8432
+1685 8433
+favorite 8434
+making 8435
+playing 8436
+summer 8437
+754 8438
+692 8439
+涔 8440
+樗 8441
+664 8442
+忾 8443
+収 8444
+绺 8445
+945 8446
+h2s 8447
+bis 8448
+self 8449
+300mm 8450
+烊 8451
+opengl 8452
+912 8453
+acute 8454
+螫 8455
+黩 8456
+996 8457
+magazine 8458
+edward 8459
+su 8460
+elisa 8461
+hdl 8462
+cyp3a4 8463
+鞫 8464
+foundation 8465
+alice 8466
+ddr3 8467
+915 8468
+923 8469
+tbs 8470
+andy 8471
+field 8472
+date 8473
+transactions 8474
+limited 8475
+during 8476
+1126 8477
+鲠 8478
+1057 8479
+fan 8480
+嘭 8481
+缣 8482
+845 8483
+681 8484
+rw 8485
+mean 8486
+1566 8487
+become 8488
+economic 8489
+852 8490
+johnny 8491
+蒺 8492
+unique 8493
+黒 8494
+tu 8495
+boys 8496
+1330 8497
+885 8498
+getting 8499
+cj 8500
+1072 8501
+nh 8502
+ne 8503
+band 8504
+cool 8505
+724 8506
+771 8507
+骘 8508
+氖 8509
+content 8510
+842 8511
+镝 8512
+俅 8513
+谮 8514
+te 8515
+9600 8516
+drive 8517
+phenyl 8518
+1275 8519
+屦 8520
+cao 8521
+menu 8522
+823 8523
+摁 8524
+氪 8525
+蘧 8526
+active 8527
+sb 8528
+appl 8529
+988 8530
+1622 8531
+伝 8532
+1725 8533
+zero 8534
+1008 8535
+3kg 8536
+腠 8537
+叡 8538
+hit 8539
+鲂 8540
+mi 8541
+0kg 8542
+748 8543
+lite 8544
+enjoy 8545
+local 8546
+789 8547
+続 8548
+1506 8549
+seen 8550
+s3 8551
+1765 8552
+european 8553
+讣 8554
+gold 8555
+1279 8556
+736 8557
+965 8558
+pl 8559
+button 8560
+耷 8561
+1430 8562
+986 8563
+763 8564
+toefl 8565
+燊 8566
+鸷 8567
+jimmy 8568
+dota 8569
+955 8570
+861 8571
+猊 8572
+732 8573
+xbox 8574
+days 8575
+dan 8576
+673 8577
+833 8578
+囡 8579
+崤 8580
+4c 8581
+economics 8582
+23000 8583
+agent 8584
+html5 8585
+points 8586
+ryan 8587
+shi 8588
+砬 8589
+湜 8590
+reading 8591
+918 8592
+mine 8593
+adc 8594
+917 8595
+1592 8596
+1781 8597
+翚 8598
+峯 8599
+909 8600
+once 8601
+exchange 8602
+choose 8603
+current 8604
+symbian 8605
+ts16949 8606
+dave 8607
+machine 8608
+鲎 8609
+qos 8610
+蕖 8611
+1785 8612
+9m 8613
+cia 8614
+until 8615
+cs4 8616
+759 8617
+f3 8618
+903 8619
+24000 8620
+968 8621
+8mg 8622
+lewis 8623
+鹈 8624
+凼 8625
+snh48 8626
+866 8627
+泫 8628
+荑 8629
+黻 8630
+牂 8631
+1722 8632
+鄣 8633
+篑 8634
+ho 8635
+1110 8636
+1784 8637
+髭 8638
+陬 8639
+寔 8640
+dt 8641
+shanghai 8642
+疴 8643
+邽 8644
+987 8645
+45000 8646
+1042 8647
+喏 8648
+彖 8649
+sl 8650
+saas 8651
+814 8652
+28000 8653
+a5 8654
+彘 8655
+赟 8656
+819 8657
+foxpro 8658
+shit 8659
+822 8660
+盹 8661
+诮 8662
+鸫 8663
+per 8664
+does 8665
+150mm 8666
+products 8667
+camp 8668
+select 8669
+capital 8670
+茕 8671
+corporation 8672
+26000 8673
+铖 8674
+954 8675
+dd 8676
+闩 8677
+string 8678
+page 8679
+ba 8680
+671 8681
+読 8682
+782 8683
+鄜 8684
+漈 8685
+盍 8686
+dlp 8687
+729 8688
+甭 8689
+愎 8690
+outlook 8691
+wii 8692
+ue 8693
+1787 8694
+festival 8695
+communication 8696
+channel 8697
+gary 8698
+1755 8699
+1774 8700
+8600 8701
+copy 8702
+150mg 8703
+魃 8704
+dragon 8705
+1056 8706
+c5 8707
+炆 8708
+track 8709
+hdpe 8710
+liang 8711
+鍊 8712
+1800mhz 8713
+1619 8714
+蛐 8715
+995 8716
+21000 8717
+薜 8718
+win 8719
+1394 8720
+1786 8721
+rain 8722
+楯 8723
+table 8724
+鲀 8725
+逡 8726
+itu 8727
+applications 8728
+mmorpg 8729
+嘞 8730
+s7 8731
+696 8732
+侔 8733
+1069 8734
+觇 8735
+lbs 8736
+0mg 8737
+car 8738
+wave 8739
+糸 8740
+踮 8741
+狷 8742
+1552 8743
+1627 8744
+latest 8745
+step 8746
+886 8747
+761 8748
+菘 8749
+783 8750
+寳 8751
+esp 8752
+扃 8753
+865 8754
+jazz 8755
+k1 8756
+fine 8757
+child 8758
+kind 8759
+anna 8760
+60mg 8761
+997 8762
+maria 8763
+nk 8764
+792 8765
+raw 8766
+late 8767
+soa 8768
+905 8769
+cai 8770
+ttl 8771
+delphi 8772
+prince 8773
+1340 8774
+禊 8775
+synthesis 8776
+喑 8777
+rmb 8778
+miller 8779
+patrick 8780
+933 8781
+running 8782
+50kg 8783
+1398 8784
+ast 8785
+752 8786
+location 8787
+dead 8788
+塍 8789
+chateau 8790
+allows 8791
+forget 8792
+tg 8793
+921 8794
+栝 8795
+5w 8796
+kiss 8797
+1690 8798
+691 8799
+arthur 8800
+瓿 8801
+index 8802
+csa 8803
+rmvb 8804
+msc 8805
+廨 8806
+cas 8807
+known 8808
+h1 8809
+tj 8810
+j2ee 8811
+asian 8812
+841 8813
+1227 8814
+g20 8815
+cross 8816
+cos 8817
+ntilde 8818
+719 8819
+貘 8820
+dnf 8821
+california 8822
+france 8823
+modern 8824
+pacific 8825
+769 8826
+1066 8827
+turbo 8828
+753 8829
+795 8830
+669 8831
+1764 8832
+868 8833
+馕 8834
+僰 8835
+union 8836
+1772 8837
+2150 8838
+1063 8839
+哏 8840
+double 8841
+fight 8842
+858 8843
+math 8844
+bo 8845
+瑷 8846
+men 8847
+sea 8848
+6700 8849
+sem 8850
+697 8851
+疎 8852
+882 8853
+note 8854
+qi 8855
+uml 8856
+902 8857
+1637 8858
+tp 8859
+1290 8860
+1085 8861
+776 8862
+蝣 8863
+怵 8864
+阃 8865
+dps 8866
+1687 8867
+弢 8868
+镲 8869
+hcl 8870
+al2o3 8871
+js 8872
+auto 8873
+螅 8874
+1683 8875
+v5 8876
+culture 8877
+935 8878
+吖 8879
+edge 8880
+碲 8881
+voice 8882
+1007 8883
+bridge 8884
+855 8885
+008 8886
+夼 8887
+茌 8888
+battle 8889
+嗬 8890
+靺 8891
+dp 8892
+ae 8893
+1090 8894
+895 8895
+1012 8896
+1162 8897
+bi 8898
+778 8899
+髀 8900
+1575 8901
+pcm 8902
+15min 8903
+1598 8904
+铊 8905
+secret 8906
+739 8907
+200m 8908
+6h 8909
+matt 8910
+谡 8911
+card 8912
+mic 8913
+癔 8914
+ecu 8915
+16mm 8916
+984 8917
+镠 8918
+5km 8919
+dhcp 8920
+1753 8921
+巻 8922
+秾 8923
+living 8924
+gn 8925
+1643 8926
+framework 8927
+菪 8928
+679 8929
+赜 8930
+1782 8931
+four 8932
+铈 8933
+1777 8934
+british 8935
+shell 8936
+santa 8937
+yuan 8938
+20ma 8939
+fly 8940
+927 8941
+qu 8942
+nds 8943
+qaq 8944
+bar 8945
+髙 8946
+arp 8947
+1667 8948
+1773 8949
+693 8950
+main 8951
+鲳 8952
+1510 8953
+1002 8954
+2022 8955
+cdna 8956
+box 8957
+珰 8958
+100km 8959
+004 8960
+畋 8961
+bring 8962
+泅 8963
+959 8964
+hpv 8965
+makes 8966
+cmv 8967
+鲅 8968
+tmd 8969
+1762 8970
+854 8971
+泚 8972
+ghost 8973
+short 8974
+mcu 8975
+1768 8976
+cat 8977
+963 8978
+1757 8979
+1206 8980
+1207 8981
+puzzle 8982
+793 8983
+central 8984
+859 8985
+飏 8986
+walter 8987
+60hz 8988
+anderson 8989
+1727 8990
+thought 8991
+屍 8992
+仨 8993
+864 8994
+molecular 8995
+856 8996
+dong 8997
+financial 8998
+1728 8999
+surface 9000
+g2 9001
+mf 9002
+葚 9003
+叻 9004
+solidworks 9005
+res 9006
+speed 9007
+1195 9008
+咻 9009
+ascii 9010
+1404 9011
+784 9012
+jeff 9013
+衩 9014
+1371 9015
+land 9016
+biology 9017
+1655 9018
+郄 9019
+otc 9020
+sio 9021
+1310 9022
+1605 9023
+蹩 9024
+mems 9025
+1618 9026
+m16 9027
+complete 9028
+industrial 9029
+acs 9030
+1603 9031
+kids 9032
+tour 9033
+u2 9034
+allen 9035
+1756 9036
+743 9037
+嬖 9038
+踽 9039
+davis 9040
+柽 9041
+鞨 9042
+65279 9043
+7600 9044
+30ml 9045
+957 9046
+0l 9047
+734 9048
+p450 9049
+956 9050
+ir 9051
+麴 9052
+500mm 9053
+casio 9054
+1038 9055
+roger 9056
+library 9057
+015 9058
+1652 9059
+薙 9060
+within 9061
+hands 9062
+874 9063
+ntsc 9064
+钇 9065
+whole 9066
+jq 9067
+氵 9068
+垆 9069
+post 9070
+sweet 9071
+wall 9072
+898 9073
+cs5 9074
+feo 9075
+9800 9076
+cms 9077
+1390 9078
+since 9079
+medical 9080
+犟 9081
+1492 9082
+罍 9083
+stand 9084
+justin 9085
+lake 9086
+i5 9087
+1729 9088
+bell 9089
+ruby 9090
+important 9091
+bout 9092
+images 9093
+lab 9094
+962 9095
+1759 9096
+rj 9097
+cache 9098
+nb 9099
+production 9100
+経 9101
+807 9102
+1771 9103
+doing 9104
+粜 9105
+tnf 9106
+ws 9107
+guide 9108
+bim 9109
+events 9110
+1626 9111
+1016 9112
+焜 9113
+performance 9114
+ra 9115
+zl 9116
+牀 9117
+1568 9118
+1647 9119
+埝 9120
+洧 9121
+1615 9122
+shift 9123
+788 9124
+shen 9125
+1588 9126
+60mm 9127
+覧 9128
+tuv 9129
+1673 9130
+electronic 9131
+mos 9132
+蓣 9133
+8kg 9134
+862 9135
+echo 9136
+1572 9137
+section 9138
+981 9139
+甯 9140
+sg 9141
+1664 9142
+understand 9143
+hsk 9144
+delta 9145
+x86 9146
+eap 9147
+block 9148
+1578 9149
+er 9150
+xl 9151
+蒐 9152
+馐 9153
+nox 9154
+畑 9155
+ib 9156
+trying 9157
+ann 9158
+1635 9159
+apache 9160
+naoh 9161
+12345 9162
+缑 9163
+礽 9164
+1624 9165
+694 9166
+瞋 9167
+1601 9168
+浍 9169
+983 9170
+773 9171
+1000m 9172
+someone 9173
+15kg 9174
+25m 9175
+847 9176
+袢 9177
+桕 9178
+1037 9179
+jerry 9180
+843 9181
+picture 9182
+919 9183
+e3 9184
+printf 9185
+3gs 9186
+marie 9187
+853 9188
+rj45 9189
+侩 9190
+913 9191
+896 9192
+lose 9193
+unicode 9194
+100cm 9195
+1711 9196
+charlie 9197
+詈 9198
+戸 9199
+1689 9200
+room 9201
+烝 9202
+beat 9203
+堌 9204
+伋 9205
+hplc 9206
+9300 9207
+110kv 9208
+nfc 9209
+倬 9210
+764 9211
+iis 9212
+圯 9213
+solo 9214
+碇 9215
+ef 9216
+round 9217
+chang 9218
+1366 9219
+781 9220
+1585 9221
+982 9222
+socket 9223
+df 9224
+892 9225
+1536 9226
+831 9227
+ren 9228
+6kg 9229
+4900 9230
+纰 9231
+object 9232
+forever 9233
+832 9234
+951 9235
+qr 9236
+1023 9237
+8800 9238
+4kg 9239
+磾 9240
+泔 9241
+1131 9242
+纮 9243
+蓁 9244
+971 9245
+building 9246
+1021 9247
+铗 9248
+939 9249
+弇 9250
+挲 9251
+crystal 9252
+艉 9253
+smtp 9254
+鱬 9255
+cims 9256
+fang 9257
+1265 9258
+trans 9259
+pan 9260
+1745 9261
+1604 9262
+泺 9263
+橛 9264
+817 9265
+796 9266
+袴 9267
+cosplay 9268
+1154 9269
+1189 9270
+749 9271
+794 9272
+1068 9273
+881 9274
+hc 9275
+hope 9276
+1410 9277
+couldn 9278
+1638 9279
+992 9280
+along 9281
+age 9282
+250mg 9283
+clear 9284
+aps 9285
+1631 9286
+1011 9287
+provides 9288
+1123 9289
+1701 9290
+36000 9291
+csf 9292
+韪 9293
+n1 9294
+works 9295
+籓 9296
+967 9297
+ptc 9298
+贶 9299
+1111 9300
+1651 9301
+棰 9302
+1726 9303
+sar 9304
+1666 9305
+qvga 9306
+hf 9307
+coreldraw 9308
+possible 9309
+趵 9310
+1629 9311
+943 9312
+marc 9313
+luo 9314
+樨 9315
+848 9316
+county 9317
+944 9318
+tb 9319
+dts 9320
+junior 9321
+vba 9322
+lot 9323
+傕 9324
+玕 9325
+毎 9326
+direct 9327
+839 9328
+繸 9329
+2350 9330
+774 9331
+劵 9332
+fsh 9333
+wmv 9334
+镧 9335
+秫 9336
+1094 9337
+osi 9338
+1602 9339
+邶 9340
+猞 9341
+dior 9342
+1766 9343
+1623 9344
+廛 9345
+栌 9346
+钲 9347
+镦 9348
+1607 9349
+psa 9350
+spss 9351
+xy 9352
+1769 9353
+cells 9354
+1465 9355
+1577 9356
+gon 9357
+send 9358
+vision 9359
+thinking 9360
+imf 9361
+嘏 9362
+carl 9363
+蝰 9364
+32000 9365
+bay 9366
+928 9367
+is09001 9368
+镏 9369
+20kg 9370
+淠 9371
+imax 9372
+novel 9373
+qt 9374
+1684 9375
+荇 9376
+逄 9377
+au 9378
+author 9379
+mod 9380
+80mm 9381
+1748 9382
+849 9383
+1612 9384
+yet 9385
+嘅 9386
+929 9387
+6l 9388
+karl 9389
+6100 9390
+students 9391
+gmat 9392
+myself 9393
+kate 9394
+jpg 9395
+979 9396
+1752 9397
+829 9398
+2450 9399
+914 9400
+876 9401
+祕 9402
+瑠 9403
+48h 9404
+mpv 9405
+1734 9406
+mis 9407
+1565 9408
+walk 9409
+941 9410
+1075 9411
+1235 9412
+natural 9413
+k2 9414
+977 9415
+炝 9416
+杪 9417
+4050 9418
+1669 9419
+p3 9420
+1004 9421
+fn 9422
+埴 9423
+1555 9424
+vmware 9425
+chloride 9426
+942 9427
+steven 9428
+1078 9429
+獬 9430
+966 9431
+1135 9432
+country 9433
+947 9434
+柢 9435
+捱 9436
+跣 9437
+887 9438
+涑 9439
+75mm 9440
+1278 9441
+1583 9442
+western 9443
+watch 9444
+撃 9445
+伢 9446
+堠 9447
+1045 9448
+12m 9449
+museum 9450
+1215 9451
+document 9452
+marketing 9453
+952 9454
+卽 9455
+猁 9456
+usb3 9457
+906 9458
+厣 9459
+physical 9460
+辏 9461
+1668 9462
+旆 9463
+agp 9464
+茆 9465
+1488 9466
+pg 9467
+乜 9468
+deep 9469
+1082 9470
+961 9471
+踯 9472
+1526 9473
+# 9474
+[ 9475
+yam 9476
+lofter 9477
+##s 9478
+##0 9479
+##a 9480
+##2 9481
+##1 9482
+##3 9483
+##e 9484
+##8 9485
+##5 9486
+##6 9487
+##4 9488
+##9 9489
+##7 9490
+##t 9491
+##o 9492
+##d 9493
+##i 9494
+##n 9495
+##m 9496
+##c 9497
+##l 9498
+##y 9499
+##r 9500
+##g 9501
+##p 9502
+##f 9503
+pixnet 9504
+cookies 9505
+tripadvisor 9506
+##er 9507
+##k 9508
+##h 9509
+##b 9510
+##x 9511
+##u 9512
+##w 9513
+##ing 9514
+ctrip 9515
+##on 9516
+##v 9517
+llc 9518
+##an 9519
+##z 9520
+blogthis 9521
+##le 9522
+##in 9523
+##mm 9524
+##00 9525
+ig 9526
+##ng 9527
+##us 9528
+##te 9529
+##ed 9530
+ncc 9531
+blog 9532
+##10 9533
+##al 9534
+##ic 9535
+##ia 9536
+##q 9537
+##ce 9538
+##en 9539
+##is 9540
+##ra 9541
+##es 9542
+##j 9543
+##cm 9544
+tw 9545
+##ne 9546
+##re 9547
+##tion 9548
+pony 9549
+##2017 9550
+##ch 9551
+##or 9552
+##na 9553
+cafe 9554
+pinterest 9555
+pixstyleme3c 9556
+##ta 9557
+##2016 9558
+##ll 9559
+##20 9560
+##ie 9561
+##ma 9562
+##17 9563
+##ion 9564
+##th 9565
+##st 9566
+##se 9567
+##et 9568
+##ck 9569
+##ly 9570
+web885 9571
+##ge 9572
+xd 9573
+##ry 9574
+##11 9575
+0fork 9576
+##12 9577
+##ter 9578
+##ar 9579
+##la 9580
+##os 9581
+##30 9582
+##el 9583
+##50 9584
+##ml 9585
+tue 9586
+posted 9587
+##at 9588
+##man 9589
+##15 9590
+ago 9591
+##it 9592
+##me 9593
+##de 9594
+##nt 9595
+##mb 9596
+##16 9597
+##ve 9598
+##da 9599
+##ps 9600
+##to 9601
+https 9602
+momo 9603
+##son 9604
+##ke 9605
+##80 9606
+ebd 9607
+apk 9608
+##88 9609
+##um 9610
+wiki 9611
+brake 9612
+mon 9613
+po 9614
+june 9615
+##ss 9616
+fb 9617
+##as 9618
+leonardo 9619
+safari 9620
+##60 9621
+wed 9622
+win7 9623
+kiehl 9624
+##co 9625
+##go 9626
+vfm 9627
+kanye 9628
+##90 9629
+##2015 9630
+##id 9631
+##ey 9632
+##sa 9633
+##ro 9634
+##am 9635
+##no 9636
+thu 9637
+fri 9638
+##sh 9639
+##ki 9640
+comments 9641
+##pe 9642
+##ine 9643
+uber 9644
+##mi 9645
+##ton 9646
+wordpress 9647
+##ment 9648
+win10 9649
+##ld 9650
+##li 9651
+gmail 9652
+##rs 9653
+##ri 9654
+##rd 9655
+##21 9656
+##io 9657
+##99 9658
+paypal 9659
+policy 9660
+##40 9661
+##ty 9662
+##18 9663
+##01 9664
+##ba 9665
+taiwan 9666
+##ga 9667
+privacy 9668
+agoda 9669
+##13 9670
+##ny 9671
+##24 9672
+##22 9673
+##by 9674
+##ur 9675
+##hz 9676
+##ang 9677
+cookie 9678
+netscape 9679
+##ka 9680
+##ad 9681
+nike 9682
+survey 9683
+##016 9684
+wikia 9685
+##32 9686
+##017 9687
+cbc 9688
+##tor 9689
+##kg 9690
+##rt 9691
+##14 9692
+campaign 9693
+##ct 9694
+##ts 9695
+##ns 9696
+##ao 9697
+##nd 9698
+##70 9699
+##ya 9700
+##il 9701
+##25 9702
+0020 9703
+897 9704
+##23 9705
+hotels 9706
+##ian 9707
+6606 9708
+##ers 9709
+##26 9710
+##day 9711
+##ay 9712
+##line 9713
+##be 9714
+talk2yam 9715
+yamservice 9716
+coco 9717
+##dy 9718
+##ies 9719
+##ha 9720
+instagram 9721
+##ot 9722
+##va 9723
+##mo 9724
+##land 9725
+ltxsw 9726
+##ation 9727
+##pa 9728
+##ol 9729
+tag 9730
+##ue 9731
+##31 9732
+oppo 9733
+##ca 9734
+##om 9735
+chrome 9736
+##ure 9737
+lol 9738
+##19 9739
+##bo 9740
+##100 9741
+##way 9742
+##ko 9743
+##do 9744
+##un 9745
+##ni 9746
+herme 9747
+##28 9748
+##up 9749
+##06 9750
+##ds 9751
+admin 9752
+##48 9753
+##015 9754
+##35 9755
+##ee 9756
+tpp 9757
+##ive 9758
+##cc 9759
+##ble 9760
+##ity 9761
+##ex 9762
+##ler 9763
+##ap 9764
+##book 9765
+##ice 9766
+##km 9767
+##mg 9768
+##ms 9769
+ebay 9770
+##29 9771
+ubuntu 9772
+##cy 9773
+##view 9774
+##lo 9775
+##oo 9776
+##02 9777
+step1 9778
+july 9779
+##net 9780
+##ls 9781
+##ii 9782
+##05 9783
+##33 9784
+step2 9785
+ios9 9786
+##box 9787
+##ley 9788
+samsung 9789
+pokemon 9790
+##ent 9791
+##les 9792
+s8 9793
+atom 9794
+##said 9795
+##55 9796
+##2014 9797
+##66 9798
+adidas 9799
+amazon 9800
+##ber 9801
+##ner 9802
+visa 9803
+##77 9804
+##der 9805
+connectivity 9806
+##hi 9807
+firefox 9808
+skip 9809
+##27 9810
+##ir 9811
+##61 9812
+##ai 9813
+##ver 9814
+cafe2017 9815
+##ron 9816
+##ster 9817
+##sk 9818
+##ft 9819
+longchamp 9820
+ssd 9821
+##ti 9822
+reply 9823
+##my 9824
+apr 9825
+##ker 9826
+source 9827
+##one 9828
+##2013 9829
+##ow 9830
+goods 9831
+##lin 9832
+##ip 9833
+##ics 9834
+##45 9835
+##03 9836
+##ff 9837
+##47 9838
+ganji 9839
+##nce 9840
+##per 9841
+faq 9842
+comment 9843
+##ock 9844
+##bs 9845
+##ah 9846
+##lv 9847
+##mp 9848
+##000 9849
+melody 9850
+17life 9851
+##au 9852
+##71 9853
+##04 9854
+##95 9855
+##age 9856
+tips 9857
+##68 9858
+##ting 9859
+##ung 9860
+wonderland 9861
+##ction 9862
+mar 9863
+article 9864
+##db 9865
+##07 9866
+##ore 9867
+##op 9868
+##78 9869
+##38 9870
+##ong 9871
+##73 9872
+##08 9873
+##ica 9874
+##36 9875
+##wa 9876
+##64 9877
+homemesh 9878
+##85 9879
+##tv 9880
+##di 9881
+macbook 9882
+##ier 9883
+##si 9884
+##75 9885
+##ok 9886
+goris 9887
+lock 9888
+##ut 9889
+carol 9890
+##vi 9891
+##ac 9892
+anti 9893
+jan 9894
+tags 9895
+##98 9896
+##51 9897
+august 9898
+##86 9899
+##fs 9900
+##sion 9901
+jordan 9902
+##tt 9903
+##lt 9904
+##42 9905
+##bc 9906
+vivi 9907
+##rry 9908
+##ted 9909
+##rn 9910
+usd 9911
+##t00 9912
+##58 9913
+##09 9914
+##34 9915
+goo 9916
+##ui 9917
+##ary 9918
+item 9919
+##pm 9920
+##41 9921
+##za 9922
+##2012 9923
+blogabstract 9924
+##ger 9925
+##62 9926
+##44 9927
+gr2 9928
+asus 9929
+cindy 9930
+##hd 9931
+esc 9932
+##od 9933
+booking 9934
+##53 9935
+fed 9936
+##81 9937
+##ina 9938
+chan 9939
+distribution 9940
+steam 9941
+pk10 9942
+##ix 9943
+##65 9944
+##91 9945
+dec 9946
+##ana 9947
+icecat 9948
+00z 9949
+##46 9950
+##ji 9951
+##ard 9952
+oct 9953
+##ain 9954
+jp 9955
+##ze 9956
+##bi 9957
+cio 9958
+##56 9959
+h5 9960
+##39 9961
+##port 9962
+curve 9963
+##nm 9964
+##dia 9965
+utc 9966
+12345678910 9967
+##52 9968
+chanel 9969
+##and 9970
+##im 9971
+##63 9972
+vera 9973
+vivo 9974
+##ei 9975
+2756 9976
+##69 9977
+msci 9978
+##po 9979
+##89 9980
+##bit 9981
+##out 9982
+##zz 9983
+##97 9984
+##67 9985
+opec 9986
+##96 9987
+##tes 9988
+##ast 9989
+##ling 9990
+##ory 9991
+##ical 9992
+kitty 9993
+##43 9994
+step3 9995
+##cn 9996
+win8 9997
+iphone7 9998
+beauty 9999
+##87 10000
+dollars 10001
+##ys 10002
+##oc 10003
+pay 10004
+##2011 10005
+##lly 10006
+##ks 10007
+download 10008
+sep 10009
+##board 10010
+##37 10011
+##lan 10012
+winrar 10013
+##que 10014
+##ua 10015
+##com 10016
+ettoday 10017
+##54 10018
+##ren 10019
+##via 10020
+##72 10021
+##79 10022
+##tch 10023
+##49 10024
+##ial 10025
+##nn 10026
+step4 10027
+2765 10028
+gov 10029
+##xx 10030
+mandy 10031
+##ser 10032
+copyright 10033
+fashion 10034
+##ist 10035
+##art 10036
+##lm 10037
+##ek 10038
+##ning 10039
+##if 10040
+##ite 10041
+iot 10042
+##84 10043
+##2010 10044
+##ku 10045
+october 10046
+##ux 10047
+trump 10048
+##hs 10049
+##ide 10050
+##ins 10051
+april 10052
+##ight 10053
+##83 10054
+protected 10055
+##fe 10056
+##ho 10057
+ofo 10058
+gomaji 10059
+march 10060
+##lla 10061
+##pp 10062
+##ec 10063
+6s 10064
+720p 10065
+##rm 10066
+##ham 10067
+##92 10068
+fandom 10069
+##ell 10070
+info 10071
+##82 10072
+sina 10073
+4066 10074
+##able 10075
+##ctor 10076
+rights 10077
+jul 10078
+##76 10079
+mall 10080
+##59 10081
+donald 10082
+sodu 10083
+##light 10084
+reserved 10085
+htm 10086
+##han 10087
+##57 10088
+##ise 10089
+##tions 10090
+##shi 10091
+doc 10092
+055 10093
+##ram 10094
+shopping 10095
+aug 10096
+##pi 10097
+##well 10098
+wam 10099
+##hu 10100
+##gb 10101
+##93 10102
+mix 10103
+##ef 10104
+##uan 10105
+bwl 10106
+##plus 10107
+##res 10108
+##ess 10109
+tea 10110
+hktvmall 10111
+##ate 10112
+##ese 10113
+feb 10114
+inn 10115
+nov 10116
+##ci 10117
+pass 10118
+##bet 10119
+##nk 10120
+coffee 10121
+airbnb 10122
+##ute 10123
+woshipm 10124
+skype 10125
+##fc 10126
+##www 10127
+##94 10128
+##ght 10129
+##gs 10130
+##ile 10131
+##wood 10132
+##uo 10133
+icon 10134
+##em 10135
+says 10136
+##king 10137
+##tive 10138
+blogger 10139
+##74 10140
+##ox 10141
+##zy 10142
+##red 10143
+##ium 10144
+##lf 10145
+nokia 10146
+claire 10147
+##ding 10148
+november 10149
+lohas 10150
+##500 10151
+##tic 10152
+##cs 10153
+##che 10154
+##ire 10155
+##gy 10156
+##ult 10157
+january 10158
+ptt 10159
+##fa 10160
+##mer 10161
+pchome 10162
+udn 10163
+##time 10164
+##tte 10165
+garden 10166
+eleven 10167
+309b 10168
+bat 10169
+##123 10170
+##tra 10171
+kindle 10172
+##ern 10173
+xperia 10174
+ces 10175
+travel 10176
+##ous 10177
+##int 10178
+edu 10179
+cho 10180
+##car 10181
+##our 10182
+##ant 10183
+rends 10184
+##jo 10185
+mastercard 10186
+##2000 10187
+kb 10188
+##min 10189
+##ino 10190
+##ris 10191
+##ud 10192
+##set 10193
+##her 10194
+##ou 10195
+taipei 10196
+##fi 10197
+##ill 10198
+aphojoy 10199
+december 10200
+meiki 10201
+##ick 10202
+tweet 10203
+##av 10204
+iphone6 10205
+##dd 10206
+views 10207
+##mark 10208
+##ash 10209
+##ome 10210
+koreanmall 10211
+##ak 10212
+q2 10213
+##200 10214
+mlb 10215
+##lle 10216
+##watch 10217
+##und 10218
+##tal 10219
+##less 10220
+4399 10221
+##rl 10222
+update 10223
+shop 10224
+##mhz 10225
+##house 10226
+##key 10227
+##001 10228
+##hy 10229
+##web 10230
+##2009 10231
+##gg 10232
+##wan 10233
+##val 10234
+2021 10235
+##ons 10236
+doi 10237
+trivago 10238
+overdope 10239
+##ance 10240
+573032185 10241
+wx17house 10242
+##so 10243
+audi 10244
+##he 10245
+##rp 10246
+##ake 10247
+beach 10248
+cfa 10249
+ps4 10250
+##800 10251
+##link 10252
+##hp 10253
+ferragamo 10254
+##eng 10255
+##style 10256
+##gi 10257
+i7 10258
+##ray 10259
+##max 10260
+##pc 10261
+september 10262
+##ace 10263
+vps 10264
+february 10265
+pantos 10266
+wp 10267
+lisa 10268
+jquery 10269
+offer 10270
+##berg 10271
+##news 10272
+fks 10273
+##all 10274
+##rus 10275
+##888 10276
+##works 10277
+blogtitle 10278
+loftpermalink 10279
+ling 10280
+##ja 10281
+outlet 10282
+##ea 10283
+##top 10284
+##ness 10285
+salvatore 10286
+##lu 10287
+swift 10288
+##ul 10289
+week 10290
+##ean 10291
+##300 10292
+##gle 10293
+##back 10294
+powered 10295
+##tan 10296
+##nes 10297
+canon 10298
+##zi 10299
+##las 10300
+##oe 10301
+##sd 10302
+##bot 10303
+##world 10304
+##zo 10305
+top100 10306
+pmi 10307
+##vr 10308
+ball 10309
+vogue 10310
+ofweek 10311
+##list 10312
+##ort 10313
+##lon 10314
+##tc 10315
+##of 10316
+##bus 10317
+##gen 10318
+nas 10319
+##lie 10320
+##ria 10321
+##coin 10322
+##bt 10323
+nata 10324
+vive 10325
+cup 10326
+##ook 10327
+##sy 10328
+msg 10329
+3ce 10330
+##word 10331
+ebooks 10332
+r8 10333
+nice 10334
+months 10335
+rewards 10336
+##ther 10337
+0800 10338
+##xi 10339
+##sc 10340
+gg 10341
+blogfp 10342
+daily 10343
+##bb 10344
+##tar 10345
+##ky 10346
+anthony 10347
+##yo 10348
+##ara 10349
+##aa 10350
+##rc 10351
+##tz 10352
+##ston 10353
+gear 10354
+##eo 10355
+##ade 10356
+##win 10357
+##ura 10358
+##den 10359
+##ita 10360
+##sm 10361
+png 10362
+rakuten 10363
+whatsapp 10364
+##use 10365
+pad 10366
+gucci 10367
+##ode 10368
+##fo 10369
+chicago 10370
+##hone 10371
+io 10372
+sogo 10373
+be2 10374
+##ology 10375
+cloud 10376
+##con 10377
+##ford 10378
+##joy 10379
+##kb 10380
+##rade 10381
+##ach 10382
+docker 10383
+##ful 10384
+##ase 10385
+ford 10386
+##star 10387
+edited 10388
+##are 10389
+##mc 10390
+siri 10391
+##ella 10392
+bloomberg 10393
+##read 10394
+pizza 10395
+##ison 10396
+##vm 10397
+node 10398
+18k 10399
+##play 10400
+##cer 10401
+##yu 10402
+##ings 10403
+asr 10404
+##lia 10405
+step5 10406
+##cd 10407
+pixstyleme 10408
+##600 10409
+##tus 10410
+tokyo 10411
+##rial 10412
+##life 10413
+##ae 10414
+tcs 10415
+##rk 10416
+##wang 10417
+##sp 10418
+##ving 10419
+premium 10420
+netflix 10421
+##lton 10422
+##ple 10423
+##cal 10424
+021 10425
+##sen 10426
+##ville 10427
+nexus 10428
+##ius 10429
+##mah 10430
+tila 10431
+##tin 10432
+resort 10433
+##ws 10434
+p10 10435
+report 10436
+##360 10437
+##ru 10438
+bus 10439
+vans 10440
+##est 10441
+links 10442
+rebecca 10443
+##dm 10444
+azure 10445
+##365 10446
+##mon 10447
+moto 10448
+##eam 10449
+blogspot 10450
+##ments 10451
+##ik 10452
+##kw 10453
+##bin 10454
+##ata 10455
+##vin 10456
+##tu 10457
+##ula 10458
+station 10459
+##ature 10460
+files 10461
+zara 10462
+hdr 10463
+top10 10464
+s6 10465
+marriott 10466
+avira 10467
+tab 10468
+##ran 10469
+##home 10470
+oculus 10471
+##ral 10472
+rosie 10473
+##force 10474
+##ini 10475
+ice 10476
+##bert 10477
+##nder 10478
+##mber 10479
+plurk 10480
+##sis 10481
+00kg 10482
+##ence 10483
+##nc 10484
+##name 10485
+log 10486
+ikea 10487
+malaysia 10488
+##ncy 10489
+##nie 10490
+##ye 10491
+##oid 10492
+##chi 10493
+xuehai 10494
+##1000 10495
+##orm 10496
+##rf 10497
+##ware 10498
+##pro 10499
+##era 10500
+##ub 10501
+##2008 10502
+8891 10503
+scp 10504
+##zen 10505
+qvod 10506
+jcb 10507
+##hr 10508
+weibo 10509
+##row 10510
+##ish 10511
+github 10512
+mate 10513
+##lot 10514
+##ane 10515
+##tina 10516
+ed2k 10517
+##vel 10518
+##900 10519
+final 10520
+ns 10521
+bytes 10522
+##ene 10523
+##cker 10524
+##2007 10525
+##px 10526
+topapp 10527
+helpapp 10528
+14k 10529
+g4g 10530
+ldquo 10531
+##fork 10532
+##gan 10533
+##zon 10534
+##qq 10535
+##google 10536
+##ism 10537
+##zer 10538
+toyota 10539
+category 10540
+##labels 10541
+restaurant 10542
+##md 10543
+posts 10544
+##ico 10545
+angelababy 10546
+123456 10547
+sports 10548
+candy 10549
+##new 10550
+##here 10551
+swissinfo 10552
+dram 10553
+##ual 10554
+##vice 10555
+##wer 10556
+sport 10557
+q1 10558
+ios10 10559
+##mll 10560
+wan 10561
+##uk 10562
+x3 10563
+0t 10564
+##ming 10565
+e5 10566
+##3d 10567
+h7n9 10568
+worldcat 10569
+##vo 10570
+##led 10571
+##580 10572
+##ax 10573
+##ert 10574
+polo 10575
+##lr 10576
+##hing 10577
+##chat 10578
+##ule 10579
+hotmail 10580
+##pad 10581
+bbq 10582
+##ring 10583
+wali 10584
+2k 10585
+costco 10586
+switch 10587
+##city 10588
+philips 10589
+##mann 10590
+panasonic 10591
+##cl 10592
+##vd 10593
+##ping 10594
+##rge 10595
+##lk 10596
+css3 10597
+##ney 10598
+##ular 10599
+##400 10600
+##tter 10601
+lz 10602
+##tm 10603
+##yan 10604
+##let 10605
+coach 10606
+##pt 10607
+a8 10608
+follow 10609
+##berry 10610
+##ew 10611
+##wn 10612
+##og 10613
+##code 10614
+##rid 10615
+villa 10616
+git 10617
+r11 10618
+##cket 10619
+error 10620
+##anonymoussaid 10621
+##ag 10622
+##ame 10623
+##gc 10624
+qa 10625
+##lis 10626
+##gin 10627
+vmalife 10628
+##cher 10629
+wedding 10630
+##tis 10631
+demo 10632
+bye 10633
+##rant 10634
+orz 10635
+acer 10636
+##ats 10637
+##ven 10638
+macd 10639
+yougou 10640
+##dn 10641
+##ano 10642
+##urt 10643
+##rent 10644
+continue 10645
+script 10646
+##wen 10647
+##ect 10648
+paper 10649
+##chel 10650
+##cat 10651
+x5 10652
+fox 10653
+##blog 10654
+loading 10655
+##yn 10656
+##tp 10657
+kuso 10658
+799 10659
+vdc 10660
+forest 10661
+prime 10662
+ultra 10663
+##rmb 10664
+square 10665
+##field 10666
+##reen 10667
+##ors 10668
+##ju 10669
+##air 10670
+##map 10671
+cdn 10672
+##wo 10673
+m8 10674
+##get 10675
+opera 10676
+##base 10677
+##ood 10678
+vsa 10679
+##aw 10680
+##ail 10681
+count 10682
+##een 10683
+##gp 10684
+vsc 10685
+tree 10686
+##eg 10687
+##ose 10688
+##ories 10689
+##shop 10690
+alphago 10691
+v4 10692
+fluke62max 10693
+zip 10694
+##sta 10695
+bas 10696
+##yer 10697
+hadoop 10698
+##ube 10699
+##wi 10700
+0755 10701
+hola 10702
+##low 10703
+centre 10704
+##fer 10705
+##750 10706
+##media 10707
+##san 10708
+##bank 10709
+q3 10710
+##nge 10711
+##mail 10712
+##lp 10713
+client 10714
+event 10715
+vincent 10716
+##nse 10717
+sui 10718
+adchoice 10719
+##stry 10720
+##zone 10721
+ga 10722
+apps 10723
+##ab 10724
+##rner 10725
+kymco 10726
+##care 10727
+##pu 10728
+##yi 10729
+minkoff 10730
+annie 10731
+collection 10732
+kpi 10733
+playstation 10734
+bh 10735
+##bar 10736
+armani 10737
+##xy 10738
+iherb 10739
+##ery 10740
+##share 10741
+##ob 10742
+volvo 10743
+##ball 10744
+##hk 10745
+##cp 10746
+##rie 10747
+##ona 10748
+##sl 10749
+gtx 10750
+rdquo 10751
+jayz 10752
+##lex 10753
+##rum 10754
+namespace 10755
+##ale 10756
+##atic 10757
+##erson 10758
+##ql 10759
+##ves 10760
+##type 10761
+enter 10762
+##168 10763
+##mix 10764
+##bian 10765
+a9 10766
+ky 10767
+##lc 10768
+movie 10769
+##hc 10770
+tower 10771
+##ration 10772
+##mit 10773
+##nch 10774
+ua 10775
+tel 10776
+prefix 10777
+##o2 10778
+##point 10779
+ott 10780
+##http 10781
+##ury 10782
+baidu 10783
+##ink 10784
+member 10785
+##logy 10786
+bigbang 10787
+nownews 10788
+##js 10789
+##shot 10790
+##tb 10791
+eba 10792
+##tics 10793
+##lus 10794
+spark 10795
+##ama 10796
+##ions 10797
+##lls 10798
+##down 10799
+##ress 10800
+burberry 10801
+day2 10802
+##kv 10803
+related 10804
+edit 10805
+##ark 10806
+cx 10807
+32gb 10808
+g9 10809
+##ans 10810
+##tty 10811
+s5 10812
+##bee 10813
+thread 10814
+xr 10815
+buy 10816
+spotify 10817
+##ari 10818
+##verse 10819
+7headlines 10820
+nego 10821
+sunny 10822
+dom 10823
+positioning 10824
+fit 10825
+##tton 10826
+alexa 10827
+##ties 10828
+##llow 10829
+amy 10830
+##du 10831
+##rth 10832
+##lar 10833
+2345 10834
+##des 10835
+sidebar 10836
+site 10837
+##cky 10838
+##kit 10839
+##ime 10840
+##009 10841
+season 10842
+##fun 10843
+gogoro 10844
+a7 10845
+lily 10846
+twd600 10847
+##vis 10848
+##cture 10849
+friday 10850
+yi 10851
+##tta 10852
+##tel 10853
+##lock 10854
+economy 10855
+tinker 10856
+8gb 10857
+##app 10858
+oops 10859
+##right 10860
+edm 10861
+##cent 10862
+supreme 10863
+##its 10864
+##asia 10865
+dropbox 10866
+##tti 10867
+books 10868
+##tle 10869
+##ller 10870
+##ken 10871
+##more 10872
+##boy 10873
+sex 10874
+##dom 10875
+##ider 10876
+##unch 10877
+##put 10878
+##gh 10879
+ka 10880
+amoled 10881
+div 10882
+##tr 10883
+##n1 10884
+port 10885
+howard 10886
+##tags 10887
+ken 10888
+##nus 10889
+adsense 10890
+buff 10891
+thunder 10892
+##town 10893
+##ique 10894
+##body 10895
+pin 10896
+##erry 10897
+tee 10898
+##the 10899
+##013 10900
+udnbkk 10901
+16gb 10902
+##mic 10903
+miui 10904
+##tro 10905
+##alk 10906
+##nity 10907
+s4 10908
+##oa 10909
+docomo 10910
+##tf 10911
+##ack 10912
+fc2 10913
+##ded 10914
+##sco 10915
+##014 10916
+##rite 10917
+linkedin 10918
+##ada 10919
+##now 10920
+##ndy 10921
+ucbug 10922
+sputniknews 10923
+legalminer 10924
+##ika 10925
+##xp 10926
+##bu 10927
+q10 10928
+##rman 10929
+cheese 10930
+ming 10931
+maker 10932
+##gm 10933
+nikon 10934
+##fig 10935
+ppi 10936
+jchere 10937
+ted 10938
+fgo 10939
+tech 10940
+##tto 10941
+##gl 10942
+##len 10943
+hair 10944
+img 10945
+##pper 10946
+##a1 10947
+acca 10948
+##ition 10949
+##ference 10950
+suite 10951
+##ig 10952
+##mond 10953
+##cation 10954
+##pr 10955
+101vip 10956
+##999 10957
+64gb 10958
+airport 10959
+##over 10960
+##ith 10961
+##su 10962
+town 10963
+piece 10964
+##llo 10965
+no1 10966
+##qi 10967
+focus 10968
+reader 10969
+##admin 10970
+##ora 10971
+false 10972
+##log 10973
+##ces 10974
+##ume 10975
+motel 10976
+##oper 10977
+flickr 10978
+netcomponents 10979
+##af 10980
+pose 10981
+##ound 10982
+##cg 10983
+##site 10984
+##iko 10985
+con 10986
+##ath 10987
+##hip 10988
+##rey 10989
+cream 10990
+##cks 10991
+012 10992
+##dp 10993
+facebooktwitterpinterestgoogle 10994
+sso 10995
+shtml 10996
+swiss 10997
+##mw 10998
+lumia 10999
+xdd 11000
+tiffany 11001
+insee 11002
+russell 11003
+dell 11004
+##ations 11005
+camera 11006
+##vs 11007
+##flow 11008
+##late 11009
+classic 11010
+##nter 11011
+##ever 11012
+##lab 11013
+##nger 11014
+qe 11015
+##cing 11016
+editor 11017
+##nap 11018
+sunday 11019
+##ens 11020
+##700 11021
+##bra 11022
+acg 11023
+sofascore 11024
+mkv 11025
+##ign 11026
+jonathan 11027
+build 11028
+labels 11029
+##oto 11030
+tesla 11031
+moba 11032
+gohappy 11033
+ajax 11034
+##test 11035
+##urs 11036
+wps 11037
+fedora 11038
+##ich 11039
+mozilla 11040
+##480 11041
+##dr 11042
+urn 11043
+##lina 11044
+grace 11045
+##die 11046
+##try 11047
+##ader 11048
+elle 11049
+##chen 11050
+price 11051
+##ten 11052
+uhz 11053
+##ough 11054
+##hen 11055
+states 11056
+push 11057
+session 11058
+balance 11059
+wow 11060
+##cus 11061
+##py 11062
+##ward 11063
+##ep 11064
+34e 11065
+wong 11066
+prada 11067
+##cle 11068
+##ree 11069
+q4 11070
+##ctive 11071
+##ool 11072
+##ira 11073
+##163 11074
+rq 11075
+buffet 11076
+e6 11077
+##ez 11078
+##card 11079
+##cha 11080
+day3 11081
+eye 11082
+##end 11083
+adi 11084
+tvbs 11085
+##ala 11086
+nova 11087
+##tail 11088
+##ries 11089
+##ved 11090
+base 11091
+##ways 11092
+hero 11093
+hgih 11094
+profile 11095
+fish 11096
+mu 11097
+ssh 11098
+##wd 11099
+click 11100
+cake 11101
+##ond 11102
+pre 11103
+##tom 11104
+kic 11105
+pixel 11106
+##ov 11107
+##fl 11108
+product 11109
+6a 11110
+##pd 11111
+dear 11112
+##gate 11113
+yumi 11114
+##sky 11115
+bin 11116
+##ture 11117
+##ape 11118
+isis 11119
+nand 11120
+##101 11121
+##load 11122
+##ream 11123
+a6 11124
+##post 11125
+##we 11126
+zenfone 11127
+##ike 11128
+gd 11129
+forum 11130
+jessica 11131
+##ould 11132
+##ious 11133
+lohasthree 11134
+##gar 11135
+##ggle 11136
+##ric 11137
+##own 11138
+eclipse 11139
+##side 11140
+061 11141
+##other 11142
+##tech 11143
+##ator 11144
+engine 11145
+##ged 11146
+plaza 11147
+##fit 11148
+westbrook 11149
+reuters 11150
+##ily 11151
+contextlink 11152
+##hn 11153
+##cil 11154
+##cel 11155
+cambridge 11156
+##ize 11157
+##aid 11158
+##data 11159
+frm 11160
+##head 11161
+butler 11162
+##sun 11163
+##mar 11164
+puma 11165
+pmid 11166
+kitchen 11167
+##lic 11168
+day1 11169
+##text 11170
+##page 11171
+##rris 11172
+pm1 11173
+##ket 11174
+trackback 11175
+##hai 11176
+display 11177
+##hl 11178
+idea 11179
+##sent 11180
+airmail 11181
+##ug 11182
+##men 11183
+028 11184
+##lution 11185
+schemas 11186
+asics 11187
+wikipedia 11188
+##tional 11189
+##vy 11190
+##dget 11191
+##ein 11192
+contact 11193
+pepper 11194
+##uel 11195
+##ument 11196
+##hang 11197
+q5 11198
+##sue 11199
+##ndi 11200
+swatch 11201
+##cept 11202
+popular 11203
+##ste 11204
+##tag 11205
+trc 11206
+##west 11207
+##live 11208
+honda 11209
+ping 11210
+messenger 11211
+##rap 11212
+v9 11213
+unity 11214
+appqq 11215
+leo 11216
+##tone 11217
+##ass 11218
+uniqlo 11219
+##010 11220
+moneydj 11221
+##tical 11222
+12306 11223
+##m2 11224
+coc 11225
+miacare 11226
+##mn 11227
+tmt 11228
+##core 11229
+vim 11230
+kk 11231
+##may 11232
+target 11233
+##2c 11234
+##ope 11235
+omega 11236
+pinkoi 11237
+##rain 11238
+##ement 11239
+p9 11240
+rd 11241
+##tier 11242
+##vic 11243
+zone 11244
+isofix 11245
+cpa 11246
+kimi 11247
+##lay 11248
+lulu 11249
+##uck 11250
+050 11251
+weeks 11252
+##hop 11253
+##ear 11254
+eia 11255
+##fly 11256
+korea 11257
+boost 11258
+##ship 11259
+eur 11260
+valley 11261
+##iel 11262
+##ude 11263
+rn 11264
+##ena 11265
+feed 11266
+5757 11267
+qqmei 11268
+##thing 11269
+aws 11270
+pink 11271
+##ters 11272
+##kin 11273
+board 11274
+##vertisement 11275
+wine 11276
+##ien 11277
+##dge 11278
+##tant 11279
+##twitter 11280
+##3c 11281
+cool1 11282
+##012 11283
+##150 11284
+##fu 11285
+##iner 11286
+googlemsn 11287
+pixnetfacebookyahoo 11288
+x7 11289
+##uce 11290
+sao 11291
+##ev 11292
+##file 11293
+9678 11294
+xddd 11295
+shirt 11296
+##rio 11297
+##hat 11298
+givenchy 11299
+bang 11300
+##lio 11301
+monday 11302
+##abc 11303
+ubuntuforumwikilinuxpastechat 11304
+##vc 11305
+##rity 11306
+7866 11307
+##ost 11308
+imsean 11309
+tiger 11310
+##fet 11311
+dji 11312
+##come 11313
+##beth 11314
+##aft 11315
+##don 11316
+3p 11317
+emma 11318
+##khz 11319
+x6 11320
+##face 11321
+pptv 11322
+x4 11323
+##mate 11324
+sophie 11325
+##jing 11326
+fifa 11327
+##mand 11328
+sale 11329
+inwedding 11330
+##gn 11331
+##mmy 11332
+##pmlast 11333
+nana 11334
+##wu 11335
+note7 11336
+##340 11337
+##bel 11338
+window 11339
+##dio 11340
+##ht 11341
+##ivity 11342
+domain 11343
+neo 11344
+##isa 11345
+##lter 11346
+5k 11347
+f5 11348
+##cts 11349
+ft 11350
+zol 11351
+##act 11352
+mwc 11353
+nbapop 11354
+eds 11355
+##room 11356
+previous 11357
+tomtom 11358
+##ets 11359
+5t 11360
+chi 11361
+##hg 11362
+fairmont 11363
+gay 11364
+1b 11365
+##raph 11366
+##ils 11367
+i3 11368
+avenue 11369
+##host 11370
+##bon 11371
+##tsu 11372
+message 11373
+navigation 11374
+fintech 11375
+h6 11376
+##ject 11377
+##vas 11378
+##firm 11379
+credit 11380
+##wf 11381
+xxxx 11382
+##nor 11383
+##space 11384
+huawei 11385
+plan 11386
+json 11387
+sbl 11388
+##dc 11389
+wish 11390
+##120 11391
+##sol 11392
+windows7 11393
+washington 11394
+##nsis 11395
+lo 11396
+##sio 11397
+##ym 11398
+##bor 11399
+planet 11400
+##wt 11401
+gpa 11402
+##tw 11403
+##oka 11404
+connect 11405
+##rss 11406
+##work 11407
+##atus 11408
+chicken 11409
+##times 11410
+fa 11411
+##ather 11412
+##cord 11413
+009 11414
+##eep 11415
+hitachi 11416
+##pan 11417
+disney 11418
+##press 11419
+wind 11420
+frigidaire 11421
+##tl 11422
+hsu 11423
+##ull 11424
+expedia 11425
+archives 11426
+##wei 11427
+cut 11428
+ins 11429
+6gb 11430
+brand 11431
+cf1 11432
+##rip 11433
+##nis 11434
+128gb 11435
+3t 11436
+##oon 11437
+quick 11438
+15058 11439
+wing 11440
+##bug 11441
+##cms 11442
+##dar 11443
+##oh 11444
+zoom 11445
+trip 11446
+##nba 11447
+rcep 11448
+aspx 11449
+080 11450
+gnu 11451
+##count 11452
+##url 11453
+##ging 11454
+8591 11455
+am09 11456
+shadow 11457
+##cia 11458
+emily 11459
+##tation 11460
+host 11461
+ff 11462
+techorz 11463
+##mini 11464
+##mporary 11465
+##ering 11466
+##next 11467
+cma 11468
+##mbps 11469
+##gas 11470
+##ift 11471
+##dot 11472
+amana 11473
+##ros 11474
+##eet 11475
+##ible 11476
+##aka 11477
+##lor 11478
+maggie 11479
+##011 11480
+##iu 11481
+##gt 11482
+1tb 11483
+articles 11484
+##burg 11485
+##iki 11486
+database 11487
+fantasy 11488
+##rex 11489
+##cam 11490
+dlc 11491
+dean 11492
+##you 11493
+path 11494
+gaming 11495
+victoria 11496
+maps 11497
+##lee 11498
+##itor 11499
+overchicstoretvhome 11500
+##xt 11501
+##nan 11502
+x9 11503
+install 11504
+##ann 11505
+##ph 11506
+##rcle 11507
+##nic 11508
+##nar 11509
+metro 11510
+chocolate 11511
+##rian 11512
+##table 11513
+skin 11514
+##sn 11515
+mountain 11516
+##0mm 11517
+inparadise 11518
+7x24 11519
+##jia 11520
+eeworld 11521
+creative 11522
+g5 11523
+parker 11524
+ecfa 11525
+village 11526
+sylvia 11527
+hbl 11528
+##ques 11529
+##onsored 11530
+##x2 11531
+##v4 11532
+##tein 11533
+ie6 11534
+##stack 11535
+ver 11536
+##ads 11537
+##baby 11538
+bbe 11539
+##110 11540
+##lone 11541
+##uid 11542
+ads 11543
+022 11544
+gundam 11545
+006 11546
+scrum 11547
+match 11548
+##ave 11549
+##470 11550
+##oy 11551
+##talk 11552
+glass 11553
+lamigo 11554
+##eme 11555
+##a5 11556
+wade 11557
+kde 11558
+##lace 11559
+ocean 11560
+tvg 11561
+##covery 11562
+##r3 11563
+##ners 11564
+##rea 11565
+##aine 11566
+cover 11567
+##ision 11568
+##sia 11569
+##bow 11570
+msi 11571
+##love 11572
+soft 11573
+z2 11574
+##pl 11575
+mobil 11576
+##uy 11577
+nginx 11578
+##oi 11579
+##rr 11580
+6221 11581
+##mple 11582
+##sson 11583
+##nts 11584
+91tv 11585
+comhd 11586
+crv3000 11587
+##uard 11588
+gallery 11589
+##bia 11590
+rate 11591
+spf 11592
+redis 11593
+traction 11594
+icloud 11595
+011 11596
+jose 11597
+##tory 11598
+sohu 11599
+899 11600
+kicstart2 11601
+##hia 11602
+##sit 11603
+##walk 11604
+##xure 11605
+500g 11606
+##pact 11607
+xa 11608
+carlo 11609
+##250 11610
+##walker 11611
+##can 11612
+cto 11613
+gigi 11614
+pen 11615
+##hoo 11616
+ob 11617
+##yy 11618
+13913459 11619
+##iti 11620
+mango 11621
+##bbs 11622
+sense 11623
+oxford 11624
+walker 11625
+jennifer 11626
+##ola 11627
+course 11628
+##bre 11629
+##pus 11630
+##rder 11631
+lucky 11632
+075 11633
+ivy 11634
+##nia 11635
+sotheby 11636
+##ugh 11637
+joy 11638
+##orage 11639
+##ush 11640
+##bat 11641
+##dt 11642
+r9 11643
+##2d 11644
+##gio 11645
+wear 11646
+##lax 11647
+##moon 11648
+seven 11649
+lonzo 11650
+8k 11651
+evolution 11652
+##kk 11653
+kd 11654
+arduino 11655
+##lux 11656
+arpg 11657
+##rdon 11658
+cook 11659
+##x5 11660
+five 11661
+##als 11662
+##ida 11663
+sign 11664
+##nda 11665
+##posted 11666
+fresh 11667
+##mine 11668
+##skip 11669
+##form 11670
+##ssion 11671
+##tee 11672
+dyson 11673
+stage 11674
+##jie 11675
+##night 11676
+epson 11677
+pack 11678
+##ppy 11679
+wd 11680
+##eh 11681
+##rence 11682
+##lvin 11683
+golden 11684
+discovery 11685
+##trix 11686
+##n2 11687
+loft 11688
+##uch 11689
+##dra 11690
+##sse 11691
+1mdb 11692
+welcome 11693
+##urn 11694
+gaga 11695
+##lmer 11696
+teddy 11697
+##160 11698
+##f2016 11699
+##sha 11700
+rar 11701
+holiday 11702
+074 11703
+##vg 11704
+##nos 11705
+##rail 11706
+gartner 11707
+gi 11708
+6p 11709
+##dium 11710
+kit 11711
+b3 11712
+eco 11713
+sean 11714
+##stone 11715
+nu 11716
+##np 11717
+f16 11718
+write 11719
+029 11720
+m5 11721
+##ias 11722
+##dk 11723
+fsm 11724
+52kb 11725
+##xxx 11726
+##cake 11727
+lim 11728
+ru 11729
+1v 11730
+##ification 11731
+published 11732
+angela 11733
+16g 11734
+analytics 11735
+##nel 11736
+gmt 11737
+##icon 11738
+##bby 11739
+ios11 11740
+waze 11741
+9985 11742
+##ust 11743
+##007 11744
+delete 11745
+52sykb 11746
+wwdc 11747
+027 11748
+##fw 11749
+1389 11750
+##xon 11751
+brandt 11752
+##ses 11753
+##dragon 11754
+vetements 11755
+anne 11756
+monte 11757
+official 11758
+##ere 11759
+##nne 11760
+##oud 11761
+etnews 11762
+##a2 11763
+##graphy 11764
+##rtex 11765
+##gma 11766
+mount 11767
+archive 11768
+morning 11769
+tan 11770
+ddos 11771
+e7 11772
+day4 11773
+factory 11774
+bruce 11775
+##ito 11776
+guest 11777
+##lling 11778
+n3 11779
+mega 11780
+women 11781
+dac 11782
+church 11783
+##jun 11784
+singapore 11785
+##facebook 11786
+6991 11787
+starbucks 11788
+##tos 11789
+##stin 11790
+##shine 11791
+zen 11792
+##mu 11793
+tina 11794
+request 11795
+##gence 11796
+q7 11797
+##zzi 11798
+diary 11799
+##tore 11800
+##ead 11801
+cst 11802
+##osa 11803
+canada 11804
+va 11805
+##jiang 11806
+##lam 11807
+##nix 11808
+##sday 11809
+g6 11810
+##master 11811
+bing 11812
+##zl 11813
+nb40 11814
+thai 11815
+ln284ct 11816
+##itz 11817
+##2f 11818
+bonnie 11819
+##food 11820
+##lent 11821
+originals 11822
+##stro 11823
+##lts 11824
+##bscribe 11825
+ntd 11826
+yesstyle 11827
+hmv 11828
+##tment 11829
+d5 11830
+##pn 11831
+topios9 11832
+lifestyle 11833
+virtual 11834
+##ague 11835
+xz 11836
+##deo 11837
+muji 11838
+024 11839
+unt 11840
+##nnis 11841
+faq1 11842
+##ette 11843
+curry 11844
+##pop 11845
+release 11846
+##cast 11847
+073 11848
+##ews 11849
+5c 11850
+##stle 11851
+ios7 11852
+##ima 11853
+dog 11854
+lenovo 11855
+##r4 11856
+013 11857
+vornado 11858
+##desk 11859
+##ald 11860
+9595 11861
+##van 11862
+oil 11863
+common 11864
+##jy 11865
+##lines 11866
+g7 11867
+twice 11868
+ella 11869
+nano 11870
+belle 11871
+##mes 11872
+##self 11873
+##note 11874
+benz 11875
+##ova 11876
+##wing 11877
+kai 11878
+##hua 11879
+##rect 11880
+rainer 11881
+##unge 11882
+##0m 11883
+guestname 11884
+##uma 11885
+##kins 11886
+##zu 11887
+tokichoi 11888
+##price 11889
+##med 11890
+##mus 11891
+rmk 11892
+address 11893
+vm 11894
+openload 11895
+##group 11896
+##hin 11897
+##iginal 11898
+amg 11899
+urban 11900
+##oz 11901
+jobs 11902
+##public 11903
+##sch 11904
+##dden 11905
+##bell 11906
+hostel 11907
+##drive 11908
+##rmin 11909
+boot 11910
+##370 11911
+##fx 11912
+##nome 11913
+##ctionary 11914
+##oman 11915
+##lish 11916
+##cr 11917
+##hm 11918
+##how 11919
+francis 11920
+c919 11921
+b5 11922
+evernote 11923
+##uc 11924
+##3000 11925
+coupe 11926
+##urg 11927
+##cca 11928
+##uality 11929
+019 11930
+##ett 11931
+##ani 11932
+##tax 11933
+##rma 11934
+leonnhurt 11935
+##jin 11936
+ict 11937
+bird 11938
+notes 11939
+##dical 11940
+##lli 11941
+result 11942
+iu 11943
+ee 11944
+smap 11945
+gopro 11946
+##last 11947
+yin 11948
+pure 11949
+32g 11950
+##dan 11951
+##rame 11952
+mama 11953
+##oot 11954
+bean 11955
+##hur 11956
+2l 11957
+bella 11958
+sync 11959
+xuite 11960
+##ground 11961
+discuz 11962
+##getrelax 11963
+##ince 11964
+##bay 11965
+##5s 11966
+apt 11967
+##pass 11968
+jing 11969
+##rix 11970
+rich 11971
+niusnews 11972
+##ello 11973
+bag 11974
+##eting 11975
+##mobile 11976
+##ience 11977
+details 11978
+universal 11979
+silver 11980
+dit 11981
+private 11982
+ddd 11983
+u11 11984
+kanshu 11985
+##ified 11986
+fung 11987
+##nny 11988
+dx 11989
+##520 11990
+tai 11991
+023 11992
+##fr 11993
+##lean 11994
+##pin 11995
+##rin 11996
+ly 11997
+rick 11998
+##bility 11999
+banner 12000
+##baru 12001
+##gion 12002
+vdf 12003
+qualcomm 12004
+bear 12005
+oldid 12006
+ian 12007
+jo 12008
+##tors 12009
+population 12010
+##ernel 12011
+##mv 12012
+##bike 12013
+ww 12014
+##ager 12015
+exhibition 12016
+##del 12017
+##pods 12018
+fpx 12019
+structure 12020
+##free 12021
+##tings 12022
+kl 12023
+##rley 12024
+##copyright 12025
+##mma 12026
+orange 12027
+yoga 12028
+4l 12029
+canmake 12030
+honey 12031
+##anda 12032
+nikkie 12033
+dhl 12034
+publishing 12035
+##mall 12036
+##gnet 12037
+e88 12038
+##dog 12039
+fishbase 12040
+### 12041
+##[ 12042
+。 12043
+! 12044
+? 12045
+! 12046
+? 12047
+; 12048
+: 12049
+; 12050
+- 12051
+( 12052
+) 12053
+/ 12054
++ 12055
+" 12056
+_ 12057
+… 12058
+~ 12059
+= 12060
+' 12061
+% 12062
+& 12063
+· 12064
+* 12065
+@ 12066
+\ 12067
+] 12068
+— 12069
+~ 12070
+^ 12071
+> 12072
+丨 12073
+| 12074
+< 12075
+】 12076
+の 12077
+【 12078
+〔 12079
+〕 12080
+ー 12081
+★ 12082
+’ 12083
+$ 12084
+{ 12085
+} 12086
+‘ 12087
+[UNK] 12088
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py
new file mode 100644
index 00000000..5846878c
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/ernie.py
@@ -0,0 +1,377 @@
+# -*- coding:utf-8 -**
+# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""ERNIE"""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+from __future__ import unicode_literals
+
+import json
+import logging
+
+import paddle.fluid as fluid
+import six
+
+from .transformer_encoder import encoder, pre_process_layer
+from .transformer_encoder import gelu
+
+
+class ErnieModel(object):
+ """
+ ErnieModel
+ """
+
+ def __init__(self,
+ src_ids,
+ position_ids,
+ sentence_ids,
+ input_mask,
+ config,
+ weight_sharing=True,
+ use_fp16=False):
+ """
+ :param src_ids:
+ :param position_ids:
+ :param sentence_ids:
+ :param input_mask:
+ :param config:
+ :param weight_sharing:
+ :param use_fp16:
+ """
+ self._hidden_size = config.get('hidden_size', 768)
+ self._emb_size = config.get('emb_size', self._hidden_size)
+ self._n_layer = config.get('num_hidden_layers', 12)
+ self._n_head = config.get('num_attention_heads', 12)
+ self._voc_size = config.get('vocab_size', 30522)
+ self._max_position_seq_len = config.get('max_position_embeddings', 512)
+ self._param_share = config.get('param_share', "normal")
+ self._pre_encoder_cmd = config.get('pre_encoder_cmd', "nd")
+ self._preprocess_cmd = config.get('preprocess_cmd', "")
+ self._postprocess_cmd = config.get('postprocess_cmd', "dan")
+ self._epsilon = config.get('epsilon', 1e-05)
+ self._emb_mapping_in = config.get('emb_mapping_in', False)
+ self._n_layer_per_block = config.get('n_layer_per_block', 1)
+
+ if config.has('sent_type_vocab_size'):
+ self._sent_types = config['sent_type_vocab_size']
+ else:
+ self._sent_types = config.get('type_vocab_size', 2)
+
+ self._use_sentence_id = config.get('use_sentence_id', True)
+ self._use_task_id = config.get('use_task_id', False)
+ if self._use_task_id:
+ self._task_types = config.get('task_type_vocab_size', 3)
+ self._hidden_act = config.get('hidden_act', 'gelu')
+ self._prepostprocess_dropout = config.get('hidden_dropout_prob', 0.1)
+ self._attention_dropout = config.get('attention_probs_dropout_prob',
+ 0.1)
+ self._weight_sharing = weight_sharing
+
+ self._word_emb_name = "word_embedding"
+ self._pos_emb_name = "pos_embedding"
+ self._sent_emb_name = "sent_embedding"
+ self._task_emb_name = "task_embedding"
+ self._dtype = "float16" if use_fp16 else "float32"
+ self._emb_dtype = "float32"
+ # Initialize all weigths by truncated normal initializer, and all biases
+ # will be initialized by constant zero by default.
+ self._param_initializer = fluid.initializer.TruncatedNormal(
+ scale=config.get('initializer_range', 0.02))
+
+ self._build_model(src_ids, position_ids, sentence_ids, input_mask)
+
+ def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
+ """
+ :param src_ids:
+ :param position_ids:
+ :param sentence_ids:
+ :param input_mask:
+ :return:
+ """
+ # padding id in vocabulary must be set to 0
+ emb_out = fluid.layers.embedding(
+ input=src_ids,
+ dtype=self._emb_dtype,
+ size=[self._voc_size, self._emb_size],
+ param_attr=fluid.ParamAttr(
+ name=self._word_emb_name, initializer=self._param_initializer),
+ is_sparse=False)
+
+ position_emb_out = fluid.layers.embedding(
+ input=position_ids,
+ dtype=self._emb_dtype,
+ size=[self._max_position_seq_len, self._emb_size],
+ param_attr=fluid.ParamAttr(
+ name=self._pos_emb_name, initializer=self._param_initializer))
+
+ emb_out = emb_out + position_emb_out
+
+ if self._use_sentence_id:
+ sent_emb_out = fluid.layers.embedding(
+ sentence_ids,
+ dtype=self._emb_dtype,
+ size=[self._sent_types, self._emb_size],
+ param_attr=fluid.ParamAttr(
+ name=self._sent_emb_name,
+ initializer=self._param_initializer))
+
+ emb_out = emb_out + sent_emb_out
+
+ emb_out = pre_process_layer(
+ emb_out,
+ self._pre_encoder_cmd,
+ self._prepostprocess_dropout,
+ name='pre_encoder',
+ epsilon=self._epsilon)
+
+ if self._emb_mapping_in:
+ emb_out = fluid.layers.fc(
+ input=emb_out,
+ num_flatten_dims=2,
+ size=self._hidden_size,
+ param_attr=fluid.ParamAttr(
+ name='emb_hidden_mapping',
+ initializer=self._param_initializer),
+ bias_attr='emb_hidden_mapping_bias')
+
+ if self._dtype == "float16":
+ emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
+ input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
+ self_attn_mask = fluid.layers.matmul(
+ x=input_mask, y=input_mask, transpose_y=True)
+
+ self_attn_mask = fluid.layers.scale(
+ x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
+ n_head_self_attn_mask = fluid.layers.stack(
+ x=[self_attn_mask] * self._n_head, axis=1)
+ n_head_self_attn_mask.stop_gradient = True
+
+ self._enc_out, self._checkpoints = encoder(
+ enc_input=emb_out,
+ attn_bias=n_head_self_attn_mask,
+ n_layer=self._n_layer,
+ n_head=self._n_head,
+ d_key=self._hidden_size // self._n_head,
+ d_value=self._hidden_size // self._n_head,
+ d_model=self._hidden_size,
+ d_inner_hid=self._hidden_size * 4,
+ prepostprocess_dropout=self._prepostprocess_dropout,
+ attention_dropout=self._attention_dropout,
+ relu_dropout=0,
+ hidden_act=self._hidden_act,
+ preprocess_cmd=self._preprocess_cmd,
+ postprocess_cmd=self._postprocess_cmd,
+ param_initializer=self._param_initializer,
+ name='encoder',
+ param_share=self._param_share,
+ epsilon=self._epsilon,
+ n_layer_per_block=self._n_layer_per_block)
+ if self._dtype == "float16":
+ self._enc_out = fluid.layers.cast(
+ x=self._enc_out, dtype=self._emb_dtype)
+
+ def get_sequence_output(self):
+ """
+ :return:
+ """
+ return self._enc_out
+
+ def get_pooled_output(self):
+ """Get the first feature of each sequence for classification"""
+ next_sent_feat = fluid.layers.slice(
+ input=self._enc_out, axes=[1], starts=[0], ends=[1])
+ """
+ if self._dtype == "float16":
+ next_sent_feat = fluid.layers.cast(
+ x=next_sent_feat, dtype=self._emb_dtype)
+
+ next_sent_feat = fluid.layers.fc(
+ input=next_sent_feat,
+ size=self._emb_size,
+ param_attr=fluid.ParamAttr(
+ name="mask_lm_trans_fc.w_0", initializer=self._param_initializer),
+ bias_attr="mask_lm_trans_fc.b_0")
+ """
+ """
+ next_sent_feat = fluid.layers.fc(
+ input=next_sent_feat,
+ size=self._emb_size,
+ param_attr=fluid.ParamAttr(
+ name="mask_lm_trans_fc.w_0", initializer=self._param_initializer),
+ bias_attr="mask_lm_trans_fc.b_0")
+
+ """
+ next_sent_feat = fluid.layers.fc(
+ input=next_sent_feat,
+ size=self._hidden_size,
+ act="tanh",
+ param_attr=fluid.ParamAttr(
+ name="pooled_fc.w_0", initializer=self._param_initializer),
+ bias_attr="pooled_fc.b_0")
+ return next_sent_feat
+
+ def get_lm_output(self, mask_label, mask_pos):
+ """Get the loss & accuracy for pretraining"""
+ mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
+ # extract the first token feature in each sentence
+ self.next_sent_feat = self.get_pooled_output()
+ reshaped_emb_out = fluid.layers.reshape(
+ x=self._enc_out, shape=[-1, self._hidden_size])
+ # extract masked tokens' feature
+ mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
+
+ if self._dtype == "float16":
+ mask_feat = fluid.layers.cast(x=mask_feat, dtype=self._emb_dtype)
+
+ # transform: fc
+ if self._hidden_act == 'gelu' or self._hidden_act == 'gelu.precise':
+ _hidden_act = 'gelu'
+ elif self._hidden_act == 'gelu.approximate':
+ _hidden_act = None
+ else:
+ _hidden_act = self._hidden_act
+ mask_trans_feat = fluid.layers.fc(
+ input=mask_feat,
+ size=self._emb_size,
+ act=_hidden_act,
+ param_attr=fluid.ParamAttr(
+ name='mask_lm_trans_fc.w_0',
+ initializer=self._param_initializer),
+ bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
+ if self._hidden_act == 'gelu.approximate':
+ mask_trans_feat = gelu(mask_trans_feat)
+ else:
+ pass
+ # transform: layer norm
+ mask_trans_feat = fluid.layers.layer_norm(
+ mask_trans_feat,
+ begin_norm_axis=len(mask_trans_feat.shape) - 1,
+ param_attr=fluid.ParamAttr(
+ name='mask_lm_trans_layer_norm_scale',
+ initializer=fluid.initializer.Constant(1.)),
+ bias_attr=fluid.ParamAttr(
+ name='mask_lm_trans_layer_norm_bias',
+ initializer=fluid.initializer.Constant(1.)))
+ # transform: layer norm
+ # mask_trans_feat = pre_process_layer(
+ # mask_trans_feat, 'n', name='mask_lm_trans')
+
+ mask_lm_out_bias_attr = fluid.ParamAttr(
+ name="mask_lm_out_fc.b_0",
+ initializer=fluid.initializer.Constant(value=0.0))
+ if self._weight_sharing:
+ fc_out = fluid.layers.matmul(
+ x=mask_trans_feat,
+ y=fluid.default_main_program().global_block().var(
+ self._word_emb_name),
+ transpose_y=True)
+ fc_out += fluid.layers.create_parameter(
+ shape=[self._voc_size],
+ dtype=self._emb_dtype,
+ attr=mask_lm_out_bias_attr,
+ is_bias=True)
+
+ else:
+ fc_out = fluid.layers.fc(
+ input=mask_trans_feat,
+ size=self._voc_size,
+ param_attr=fluid.ParamAttr(
+ name="mask_lm_out_fc.w_0",
+ initializer=self._param_initializer),
+ bias_attr=mask_lm_out_bias_attr)
+
+ mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
+ logits=fc_out, label=mask_label)
+ mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
+
+ return mean_mask_lm_loss
+
+ def get_task_output(self, task, task_labels):
+ """
+ :param task:
+ :param task_labels:
+ :return:
+ """
+ task_fc_out = fluid.layers.fc(
+ input=self.next_sent_feat,
+ size=task["num_labels"],
+ param_attr=fluid.ParamAttr(
+ name=task["task_name"] + "_fc.w_0",
+ initializer=self._param_initializer),
+ bias_attr=task["task_name"] + "_fc.b_0")
+ task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy(
+ logits=task_fc_out, label=task_labels, return_softmax=True)
+ task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels)
+ mean_task_loss = fluid.layers.mean(task_loss)
+ return mean_task_loss, task_acc
+
+
+class ErnieConfig(object):
+ """parse ernie config"""
+
+ def __init__(self, config_path):
+ """
+ :param config_path:
+ """
+ self._config_dict = self._parse(config_path)
+
+ def _parse(self, config_path):
+ """
+ :param config_path:
+ :return:
+ """
+ try:
+ with open(config_path, 'r') as json_file:
+ config_dict = json.load(json_file)
+ except Exception:
+ raise IOError(
+ "Error in parsing Ernie model config file '%s'" % config_path)
+ else:
+ return config_dict
+
+ def __getitem__(self, key):
+ """
+ :param key:
+ :return:
+ """
+ return self._config_dict.get(key, None)
+
+ def has(self, key):
+ """
+ :param key:
+ :return:
+ """
+ if key in self._config_dict:
+ return True
+ return False
+
+ def get(self, key, default_value):
+ """
+ :param key,default_value:
+ :retrun:
+ """
+ if key in self._config_dict:
+ return self._config_dict[key]
+ else:
+ return default_value
+
+ def print_config(self):
+ """
+ :return:
+ """
+ for arg, value in sorted(six.iteritems(self._config_dict)):
+ logging.info('%s: %s' % (arg, value))
+ logging.info('------------------------------------------------')
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py
new file mode 100644
index 00000000..80f7a775
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/model/transformer_encoder.py
@@ -0,0 +1,501 @@
+# -*- coding:utf-8 -**
+# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Transformer encoder."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from functools import partial
+
+import paddle.fluid as fluid
+import paddle.fluid.layers as layers
+import numpy as np
+
+
+def gelu(x):
+ """Gaussian Error Linear Unit.
+
+ This is a smoother version of the RELU.
+ Original paper: https://arxiv.org/abs/1606.08415
+ Args:
+ x: float Tensor to perform activation.
+
+ Returns:
+ `x` with the GELU activation applied.
+ """
+ cdf = 0.5 * (1.0 + fluid.layers.tanh(
+ (np.sqrt(2.0 / np.pi) * (x + 0.044715 * fluid.layers.pow(x, 3.0)))))
+ return x * cdf
+
+
+def multi_head_attention(queries,
+ keys,
+ values,
+ attn_bias,
+ d_key,
+ d_value,
+ d_model,
+ n_head=1,
+ dropout_rate=0.,
+ cache=None,
+ param_initializer=None,
+ name='multi_head_att'):
+ """
+ Multi-Head Attention. Note that attn_bias is added to the logit before
+ computing softmax activiation to mask certain selected positions so that
+ they will not considered in attention weights.
+ """
+ keys = queries if keys is None else keys
+ values = keys if values is None else values
+ if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
+ raise ValueError(
+ "Inputs: quries, keys and values should all be 3-D tensors. but {} v.s. {} v.s. {}"\
+ .format(queries.shape, keys.shape, values.shape))
+
+ def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
+ """
+ Add linear projection to queries, keys, and values.
+ """
+ q = layers.fc(
+ input=queries,
+ size=d_key * n_head,
+ num_flatten_dims=2,
+ param_attr=fluid.ParamAttr(
+ name=name + '_query_fc.w_0', initializer=param_initializer),
+ bias_attr=name + '_query_fc.b_0')
+ k = layers.fc(
+ input=keys,
+ size=d_key * n_head,
+ num_flatten_dims=2,
+ param_attr=fluid.ParamAttr(
+ name=name + '_key_fc.w_0', initializer=param_initializer),
+ bias_attr=name + '_key_fc.b_0')
+ v = layers.fc(
+ input=values,
+ size=d_value * n_head,
+ num_flatten_dims=2,
+ param_attr=fluid.ParamAttr(
+ name=name + '_value_fc.w_0', initializer=param_initializer),
+ bias_attr=name + '_value_fc.b_0')
+ return q, k, v
+
+ def __split_heads(x, n_head):
+ """
+ Reshape the last dimension of inpunt tensor x so that it becomes two
+ dimensions and then transpose. Specifically, input a tensor with shape
+ [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
+ with shape [bs, n_head, max_sequence_length, hidden_dim].
+ """
+ hidden_size = x.shape[-1]
+ # The value 0 in shape attr means copying the corresponding dimension
+ # size of the input as the output dimension size.
+ reshaped = layers.reshape(
+ x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
+
+ # permuate the dimensions into:
+ # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
+ return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
+
+ def __combine_heads(x):
+ """
+ Transpose and then reshape the last two dimensions of inpunt tensor x
+ so that it becomes one dimension, which is reverse to __split_heads.
+ """
+ if len(x.shape) == 3: return x
+ if len(x.shape) != 4:
+ raise ValueError("Input(x) should be a 4-D Tensor.")
+
+ trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
+ # The value 0 in shape attr means copying the corresponding dimension
+ # size of the input as the output dimension size.
+ return layers.reshape(
+ x=trans_x,
+ shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
+ inplace=True)
+
+ def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
+ """
+ Scaled Dot-Product Attention
+ """
+ scaled_q = layers.scale(x=q, scale=d_key**-0.5)
+ product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
+ if attn_bias:
+ product += attn_bias
+ weights = layers.softmax(product)
+ if dropout_rate:
+ weights = layers.dropout(
+ weights,
+ dropout_prob=dropout_rate,
+ dropout_implementation="upscale_in_train",
+ is_test=False)
+ out = layers.matmul(weights, v)
+ return out
+
+ q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
+
+ if cache is not None: # use cache and concat time steps
+ # Since the inplace reshape in __split_heads changes the shape of k and
+ # v, which is the cache input for next time step, reshape the cache
+ # input from the previous time step first.
+ k = cache["k"] = layers.concat(
+ [layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
+ v = cache["v"] = layers.concat(
+ [layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
+
+ q = __split_heads(q, n_head)
+ k = __split_heads(k, n_head)
+ v = __split_heads(v, n_head)
+
+ ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key,
+ dropout_rate)
+
+ out = __combine_heads(ctx_multiheads)
+
+ # Project back to the model size.
+ proj_out = layers.fc(
+ input=out,
+ size=d_model,
+ num_flatten_dims=2,
+ param_attr=fluid.ParamAttr(
+ name=name + '_output_fc.w_0', initializer=param_initializer),
+ bias_attr=name + '_output_fc.b_0')
+ return proj_out
+
+
+def positionwise_feed_forward(x,
+ d_inner_hid,
+ d_hid,
+ dropout_rate,
+ hidden_act,
+ param_initializer=None,
+ name='ffn'):
+ """
+ Position-wise Feed-Forward Networks.
+ This module consists of two linear transformations with a ReLU activation
+ in between, which is applied to each position separately and identically.
+ """
+ if hidden_act == 'gelu' or hidden_act == 'gelu.precise':
+ _hidden_act = 'gelu'
+ elif hidden_act == 'gelu.approximate':
+ _hidden_act = None
+ else:
+ _hidden_act = hidden_act
+ hidden = layers.fc(
+ input=x,
+ size=d_inner_hid,
+ num_flatten_dims=2,
+ act=_hidden_act,
+ param_attr=fluid.ParamAttr(
+ name=name + '_fc_0.w_0', initializer=param_initializer),
+ bias_attr=name + '_fc_0.b_0')
+ if hidden_act == 'gelu.approximate':
+ hidden = gelu(hidden)
+
+ if dropout_rate:
+ hidden = layers.dropout(
+ hidden,
+ dropout_prob=dropout_rate,
+ dropout_implementation="upscale_in_train",
+ is_test=False)
+ out = layers.fc(
+ input=hidden,
+ size=d_hid,
+ num_flatten_dims=2,
+ param_attr=fluid.ParamAttr(
+ name=name + '_fc_1.w_0', initializer=param_initializer),
+ bias_attr=name + '_fc_1.b_0')
+ return out
+
+
+def pre_post_process_layer(prev_out,
+ out,
+ process_cmd,
+ dropout_rate=0.,
+ epsilon=1e-12,
+ name=''):
+ """
+ Add residual connection, layer normalization and droput to the out tensor
+ optionally according to the value of process_cmd.
+ This will be used before or after multi-head attention and position-wise
+ feed-forward networks.
+ """
+ for cmd in process_cmd:
+ if cmd == "a": # add residual connection
+ out = out + prev_out if prev_out else out
+ elif cmd == "n": # add layer normalization
+ out_dtype = out.dtype
+ if out_dtype == fluid.core.VarDesc.VarType.FP16:
+ out = layers.cast(x=out, dtype="float32")
+ out = layers.layer_norm(
+ out,
+ begin_norm_axis=len(out.shape) - 1,
+ param_attr=fluid.ParamAttr(
+ name=name + '_layer_norm_scale',
+ initializer=fluid.initializer.Constant(1.)),
+ bias_attr=fluid.ParamAttr(
+ name=name + '_layer_norm_bias',
+ initializer=fluid.initializer.Constant(0.)),
+ epsilon=epsilon)
+ if out_dtype == fluid.core.VarDesc.VarType.FP16:
+ out = layers.cast(x=out, dtype="float16")
+ elif cmd == "d": # add dropout
+ if dropout_rate:
+ out = layers.dropout(
+ out,
+ dropout_prob=dropout_rate,
+ dropout_implementation="upscale_in_train",
+ is_test=False)
+ return out
+
+
+pre_process_layer = partial(pre_post_process_layer, None)
+post_process_layer = pre_post_process_layer
+
+
+def encoder_layer(
+ enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd="n",
+ postprocess_cmd="da",
+ param_initializer=None,
+ name='',
+ epsilon=1e-12,
+):
+ """The encoder layers that can be stacked to form a deep encoder.
+ This module consits of a multi-head (self) attention followed by
+ position-wise feed-forward networks and both the two components companied
+ with the post_process_layer to add residual connection, layer normalization
+ and droput.
+ """
+
+ attn_output = multi_head_attention(
+ enc_input,
+ None,
+ None,
+ attn_bias,
+ d_key,
+ d_value,
+ d_model,
+ n_head,
+ attention_dropout,
+ param_initializer=param_initializer,
+ name=name + '_multi_head_att')
+
+ attn_output = post_process_layer(
+ enc_input,
+ attn_output,
+ postprocess_cmd,
+ prepostprocess_dropout,
+ name=name + '_post_att',
+ epsilon=epsilon)
+
+ ffd_output = positionwise_feed_forward(
+ attn_output,
+ d_inner_hid,
+ d_model,
+ relu_dropout,
+ hidden_act,
+ param_initializer=param_initializer,
+ name=name + '_ffn')
+
+ return post_process_layer(
+ attn_output,
+ ffd_output,
+ postprocess_cmd,
+ prepostprocess_dropout,
+ name=name + '_post_ffn',
+ epsilon=epsilon), ffd_output
+
+
+def encoder_inner_share(enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ epsilon,
+ param_initializer=None,
+ name='',
+ n_layer_per_block=1):
+ """
+ The encoder_inner_share is composed of n_layer_per_block layers returned by calling
+ encoder_layer.
+ """
+ _checkpoints = []
+ for i in range(n_layer_per_block):
+ enc_output, cp = encoder_layer(
+ enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ param_initializer=param_initializer,
+ name=name + '_layer_' + str(i),
+ epsilon=epsilon,
+ )
+ _checkpoints.append(cp)
+ enc_input = enc_output
+
+ return enc_output, _checkpoints
+
+
+def encoder_outer_share(enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ epsilon,
+ param_initializer=None,
+ name='',
+ n_layer_per_block=1):
+ """
+ The encoder_outer_share is composed of n_layer_per_block layers returned by calling
+ encoder_layer.
+ """
+ _checkpoints = []
+ for i in range(n_layer_per_block):
+ enc_output, cp = encoder_layer(
+ enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ param_initializer=param_initializer,
+ name=name,
+ epsilon=epsilon)
+ _checkpoints.append(cp)
+ enc_input = enc_output
+
+ return enc_output, _checkpoints
+
+
+def encoder(enc_input,
+ attn_bias,
+ n_layer,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ epsilon,
+ n_layer_per_block,
+ param_initializer=None,
+ name='',
+ param_share=None):
+ """
+ The encoder is composed of a stack of identical layers returned by calling
+ encoder_layer .
+ """
+ checkpoints = []
+ # for outer_share it will share same param in one block,
+ # and for inner_share it will share param across blocks, rather than in one same block
+ #
+ # outer-share inner-share
+ # [1] [1] ----\ 1st block
+ # [1] [2] ----/
+ # [2] [1] ----\ 2nd block
+ # [2] [2] ----/
+
+ if param_share == "normal" or param_share == 'outer_share':
+ #n_layer_per_block=1, n_layer=24 for bert-large
+ #n_layer_per_block=1, n_layer=12 for bert-base
+ #n_layer_per_block=12, n_layer=12 for albert-xxlarge
+ #n_layer_per_block=6, n_layer=12 for albert-xxlarge-outershare
+ enc_fn = encoder_outer_share
+ name_fn = lambda i: name + '_layer_' + str(i)
+ elif param_share == "inner_share":
+ #n_layer_per_block = 2
+ enc_fn = encoder_inner_share
+ name_fn = lambda i: name
+ else:
+ raise ValueError('unsupported param share mode')
+
+ for i in range(n_layer // n_layer_per_block):
+ enc_output, cp = enc_fn(
+ enc_input,
+ attn_bias,
+ n_head,
+ d_key,
+ d_value,
+ d_model,
+ d_inner_hid,
+ prepostprocess_dropout,
+ attention_dropout,
+ relu_dropout,
+ hidden_act,
+ preprocess_cmd,
+ postprocess_cmd,
+ param_initializer=param_initializer,
+ name=name_fn(i),
+ n_layer_per_block=n_layer_per_block,
+ epsilon=epsilon,
+ )
+ checkpoints.extend(cp)
+ enc_input = enc_output
+ enc_output = pre_process_layer(
+ enc_output,
+ preprocess_cmd,
+ prepostprocess_dropout,
+ name="post_encoder",
+ epsilon=epsilon)
+
+ return enc_output, checkpoints
diff --git a/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py
new file mode 100644
index 00000000..87187836
--- /dev/null
+++ b/hub_module/modules/text/sentiment_analysis/ernie_skep_sentiment_analysis/module.py
@@ -0,0 +1,258 @@
+# coding:utf-8
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License"
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import ast
+import os
+
+from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
+from paddlehub import TransformerModule
+from paddlehub.module.module import moduleinfo, runnable, serving
+from paddlehub.reader.tokenization import convert_to_unicode, FullTokenizer
+from paddlehub.reader.batching import pad_batch_data
+import numpy as np
+
+from ernie_skep_sentiment_analysis.model.ernie import ErnieModel, ErnieConfig
+
+
+@moduleinfo(
+ name="ernie_skep_sentiment_analysis",
+ version="1.0.0",
+ summary=
+ "SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis. Ernie_skep_sentiment_analysis module is initialize with enie_1.0_chn_large when pretraining. This module is finetuned on ChnSentiCorp dataset to do sentiment claasification. It can do sentiment analysis prediction directly, label as positive or negative.",
+ author="baidu-nlp",
+ author_email="",
+ type="nlp/sentiment_analysis",
+)
+class ErnieSkepSentimentAnalysis(TransformerModule):
+ """
+ Ernie_skep_sentiment_analysis module is initialize with enie_1.0_chn_large when pretraining.
+ This module is finetuned on ChnSentiCorp dataset to do sentiment claasification.
+ It can do sentiment analysis prediction directly, label as positive or negative.
+ """
+
+ def _initialize(self):
+ ernie_config_path = os.path.join(self.directory, "assets",
+ "ernie_1.0_large_ch.config.json")
+ self.ernie_config = ErnieConfig(ernie_config_path)
+ self.MAX_SEQ_LEN = 512
+ self.vocab_path = os.path.join(self.directory, "assets",
+ "ernie_1.0_large_ch.vocab.txt")
+ self.params_path = os.path.join(self.directory, "assets", "params")
+
+ self.infer_model_path = os.path.join(self.directory, "assets",
+ "inference_step_601")
+ self.tokenizer = FullTokenizer(vocab_file=self.vocab_path)
+
+ self.vocab = self.tokenizer.vocab
+ self.pad_id = self.vocab["[PAD]"]
+ self.label_map = {0: 'negative', 1: 'positive'}
+
+ self._set_config()
+
+ def _set_config(self):
+ """
+ predictor config setting
+ """
+ model_file_path = os.path.join(self.infer_model_path, 'model')
+ params_file_path = os.path.join(self.infer_model_path, 'params')
+
+ config = AnalysisConfig(model_file_path, params_file_path)
+ try:
+ _places = os.environ["CUDA_VISIBLE_DEVICES"]
+ int(_places[0])
+ use_gpu = True
+ except:
+ use_gpu = False
+
+ if use_gpu:
+ config.enable_use_gpu(8000, 0)
+ else:
+ config.disable_gpu()
+
+ config.disable_glog_info()
+
+ self.predictor = create_paddle_predictor(config)
+
+ def net(self, input_ids, position_ids, segment_ids, input_mask):
+ """
+ create neural network.
+ Args:
+ input_ids (tensor): the word ids.
+ position_ids (tensor): the position ids.
+ segment_ids (tensor): the segment ids.
+ input_mask (tensor): the padding mask.
+
+ Returns:
+ pooled_output (tensor): sentence-level output for classification task.
+ sequence_output (tensor): token-level output for sequence task.
+ """
+ ernie = ErnieModel(
+ src_ids=input_ids,
+ position_ids=position_ids,
+ sentence_ids=segment_ids,
+ input_mask=input_mask,
+ config=self.ernie_config,
+ use_fp16=False)
+
+ pooled_output = ernie.get_pooled_output()
+ sequence_output = ernie.get_sequence_output()
+ return pooled_output, sequence_output
+
+ def array2tensor(self, arr_data):
+ """
+ convert numpy array to PaddleTensor
+ """
+ tensor_data = PaddleTensor(arr_data)
+ return tensor_data
+
+ @serving
+ def predict_sentiment(self, texts=[], use_gpu=False):
+ """
+ Get the sentiment label for the predicted texts. It will be classified as positive and negative.
+ Args:
+ texts (list(str)): the data to be predicted.
+ use_gpu (bool): Whether to use gpu or not.
+ Returns:
+ res (list): The result of sentiment label and probabilties.
+ """
+
+ if use_gpu:
+ try:
+ _places = os.environ["CUDA_VISIBLE_DEVICES"]
+ int(_places[0])
+ except:
+ raise RuntimeError(
+ "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
+ )
+
+ results = []
+ for text in texts:
+ feature = self._convert_text_to_feature(text)
+ inputs = [self.array2tensor(ndarray) for ndarray in feature]
+ output = self.predictor.run(inputs)
+ probilities = np.array(output[0].data.float_data())
+ label = self.label_map[np.argmax(probilities)]
+ result = {
+ 'text': text,
+ 'sentiment_label': label,
+ 'positive_probs': probilities[1],
+ 'negative_probs': probilities[0]
+ }
+ results.append(result)
+
+ return results
+
+ def _convert_text_to_feature(self, text):
+ """
+ Convert the raw text to feature which is needed to run program (feed_vars).
+ """
+ text_a = convert_to_unicode(text)
+ tokens_a = self.tokenizer.tokenize(text_a)
+ max_seq_len = 512
+
+ # Account for [CLS] and [SEP] with "- 2"
+ if len(tokens_a) > max_seq_len - 2:
+ tokens_a = tokens_a[0:(max_seq_len - 2)]
+
+ tokens = []
+ text_type_ids = []
+ tokens.append("[CLS]")
+ text_type_ids.append(0)
+ for token in tokens_a:
+ tokens.append(token)
+ text_type_ids.append(0)
+ tokens.append("[SEP]")
+ text_type_ids.append(0)
+
+ token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
+ position_ids = list(range(len(token_ids)))
+ task_ids = [0] * len(token_ids)
+
+ padded_token_ids, input_mask = pad_batch_data([token_ids],
+ max_seq_len=max_seq_len,
+ pad_idx=self.pad_id,
+ return_input_mask=True)
+ padded_text_type_ids = pad_batch_data([text_type_ids],
+ max_seq_len=max_seq_len,
+ pad_idx=self.pad_id)
+ padded_position_ids = pad_batch_data([position_ids],
+ max_seq_len=max_seq_len,
+ pad_idx=self.pad_id)
+ padded_task_ids = pad_batch_data([task_ids],
+ max_seq_len=max_seq_len,
+ pad_idx=self.pad_id)
+
+ feature = [
+ padded_token_ids, padded_position_ids, padded_text_type_ids,
+ input_mask, padded_task_ids
+ ]
+ return feature
+
+ @runnable
+ def run_cmd(self, argvs):
+ """
+ Run as a command
+ """
+ self.parser = argparse.ArgumentParser(
+ description="Run the %s module." % self.name,
+ prog='hub run %s' % self.name,
+ usage='%(prog)s',
+ add_help=True)
+
+ self.arg_input_group = self.parser.add_argument_group(
+ title="Input options", description="Input data. Required")
+ self.arg_config_group = self.parser.add_argument_group(
+ title="Config options",
+ description=
+ "Run configuration for controlling module behavior, not required.")
+
+ self.add_module_config_arg()
+ self.add_module_input_arg()
+
+ args = self.parser.parse_args(argvs)
+ results = self.predict_sentiment(
+ texts=[args.input_text], use_gpu=args.use_gpu)
+ return results
+
+ def add_module_config_arg(self):
+ """
+ Add the command config options
+ """
+ self.arg_config_group.add_argument(
+ '--use_gpu',
+ type=ast.literal_eval,
+ default=False,
+ help="whether use GPU or not")
+
+ def add_module_input_arg(self):
+ """
+ Add the command input options
+ """
+ self.arg_input_group.add_argument(
+ '--input_text', type=str, default=None, help="data to be predicted")
+
+
+if __name__ == '__main__':
+ test_module = ErnieSkepSentimentAnalysis()
+ test_texts = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分']
+ results = test_module.predict_sentiment(test_texts, use_gpu=False)
+ print(results)
+ test_module.context(max_seq_len=128)
+ print(test_module.get_embedding(texts=[['你不是不聪明,而是不认真']]))
+ print(test_module.get_params_layer())
diff --git a/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml b/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml
new file mode 100644
index 00000000..a50edc19
--- /dev/null
+++ b/hub_module/scripts/configs/ernie_skep_sentiment_analysis.yml
@@ -0,0 +1,9 @@
+name: ernie_skep_sentiment_analysis
+dir: "modules/text/sentiment_analysis/ernie_skep_sentiment_analysis"
+exclude:
+ - README.md
+resources:
+ -
+ url: https://paddlehub.bj.bcebos.com/model/nlp/ernie_skep_sentiment_analysis/assets.tar.gz
+ dest: assets
+ uncompress: True
diff --git a/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py b/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py
new file mode 100644
index 00000000..bcceb238
--- /dev/null
+++ b/hub_module/tests/unittests/test_ernie_skep_sentiment_analysis.py
@@ -0,0 +1,129 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+from unittest import TestCase, main
+os.environ['CUDA_VISIBLE_DEVICES'] = '1'
+
+import numpy as np
+import paddlehub as hub
+
+
+class ErnieSkepSentimentAnalysisTestCase(TestCase):
+ def setUp(self):
+ self.module = hub.Module(name='ernie_skep_sentiment_analysis')
+ self.test_text = [[
+ '飞桨(PaddlePaddle)是国内开源产业级深度学习平台', 'PaddleHub是飞桨生态的预训练模型应用工具'
+ ], ["飞浆PaddleHub"]]
+ self.test_data = ['你不是不聪明,而是不认真', '虽然小明很努力,但是他还是没有考100分']
+ self.results = [{
+ 'text': '你不是不聪明,而是不认真',
+ 'sentiment_label': 'negative',
+ 'positive_probs': 0.10738213360309601,
+ 'negative_probs': 0.8926178216934204
+ },
+ {
+ 'text': '虽然小明很努力,但是他还是没有考100分',
+ 'sentiment_label': 'negative',
+ 'positive_probs': 0.053915347903966904,
+ 'negative_probs': 0.9460846185684204
+ }]
+
+ def test_predict_sentiment(self):
+ results_1 = self.module.predict_sentiment(self.test_data, use_gpu=False)
+ results_2 = self.module.predict_sentiment(self.test_data, use_gpu=True)
+
+ for index, res in enumerate(results_1):
+ self.assertEqual(res['text'], self.results[index]['text'])
+ self.assertEqual(res['sentiment_label'],
+ self.results[index]['sentiment_label'])
+ self.assertTrue(
+ abs(res['positive_probs'] -
+ self.results[index]['positive_probs']) < 1e-6)
+ self.assertTrue(
+ abs(res['negative_probs'] -
+ self.results[index]['negative_probs']) < 1e-6)
+
+ self.assertEqual(res['text'], results_2[index]['text'])
+ self.assertEqual(res['sentiment_label'],
+ results_2[index]['sentiment_label'])
+ self.assertTrue(
+ abs(res['positive_probs'] -
+ results_2[index]['positive_probs']) < 1e-6)
+ self.assertTrue(
+ abs(res['negative_probs'] -
+ results_2[index]['negative_probs']) < 1e-6)
+
+ def test_get_embedding(self):
+ # test batch_size
+ max_seq_len = 128
+ results = self.module.get_embedding(
+ texts=self.test_text,
+ use_gpu=False,
+ batch_size=1,
+ max_seq_len=max_seq_len)
+ results_2 = self.module.get_embedding(
+ texts=self.test_text,
+ use_gpu=False,
+ batch_size=10,
+ max_seq_len=max_seq_len)
+ # 2 sample results
+ self.assertEqual(len(results), 2)
+ self.assertEqual(len(results_2), 2)
+ # sequence embedding and token embedding results per sample
+ self.assertEqual(len(results[0]), 2)
+ self.assertEqual(len(results_2[0]), 2)
+ # sequence embedding shape
+ self.assertEqual(results[0][0].shape, (1024, ))
+ self.assertEqual(results_2[0][0].shape, (1024, ))
+ # token embedding shape
+ self.assertEqual(results[0][1].shape, (max_seq_len, 1024))
+ self.assertEqual(results_2[0][1].shape, (max_seq_len, 1024))
+
+ # test gpu
+ results_3 = self.module.get_embedding(
+ texts=self.test_text,
+ use_gpu=True,
+ batch_size=1,
+ max_seq_len=max_seq_len)
+ diff = np.abs(results[0][0] - results_3[0][0])
+ self.assertTrue((diff < 1e-6).all)
+ diff = np.abs(results[0][1] - results_3[0][1])
+ self.assertTrue((diff < 1e-6).all)
+ diff = np.abs(results[1][0] - results_3[1][0])
+ self.assertTrue((diff < 1e-6).all)
+ diff = np.abs(results[1][1] - results_3[1][1])
+ self.assertTrue((diff < 1e-6).all)
+
+ def test_get_params_layer(self):
+ self.module.context()
+ layers = self.module.get_params_layer()
+ layers = list(set(layers.values()))
+ true_layers = [i for i in range(24)]
+ self.assertEqual(layers, true_layers)
+
+ def test_get_spm_path(self):
+ self.assertEqual(self.module.get_spm_path(), None)
+
+ def test_get_word_dict_path(self):
+ self.assertEqual(self.module.get_word_dict_path(), None)
+
+ def test_get_vocab_path(self):
+ vocab_path = self.module.get_vocab_path()
+ true_vocab_path = os.path.join(self.module.directory, "assets",
+ "ernie_1.0_large_ch.vocab.txt")
+ self.assertEqual(vocab_path, true_vocab_path)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/paddlehub/module/nlp_module.py b/paddlehub/module/nlp_module.py
index 55a3a533..211f7313 100644
--- a/paddlehub/module/nlp_module.py
+++ b/paddlehub/module/nlp_module.py
@@ -319,8 +319,6 @@ class TransformerModule(NLPBaseModule):
pretraining_params_path,
main_program=main_program,
predicate=existed_params)
- logger.info("Load pretraining parameters from {}.".format(
- pretraining_params_path))
def param_prefix(self):
return "@HUB_%s@" % self.name
--
GitLab