Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
e301f567
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e301f567
编写于
12月 29, 2022
作者:
jm_12138
提交者:
GitHub
12月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update humanseg_lite (#2181)
上级
3b20f676
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
136 addition
and
160 deletion
+136
-160
modules/image/semantic_segmentation/humanseg_lite/README.md
modules/image/semantic_segmentation/humanseg_lite/README.md
+12
-5
modules/image/semantic_segmentation/humanseg_lite/README_en.md
...es/image/semantic_segmentation/humanseg_lite/README_en.md
+15
-9
modules/image/semantic_segmentation/humanseg_lite/module.py
modules/image/semantic_segmentation/humanseg_lite/module.py
+75
-76
modules/image/semantic_segmentation/humanseg_lite/optimal.py
modules/image/semantic_segmentation/humanseg_lite/optimal.py
+2
-2
modules/image/semantic_segmentation/humanseg_lite/processor.py
...es/image/semantic_segmentation/humanseg_lite/processor.py
+1
-1
modules/image/semantic_segmentation/humanseg_lite/test.py
modules/image/semantic_segmentation/humanseg_lite/test.py
+31
-67
未找到文件。
modules/image/semantic_segmentation/humanseg_lite/README.md
浏览文件 @
e301f567
...
...
@@ -226,6 +226,9 @@
cv2.imwrite("segment_human_lite.png", rgba)
```
-
### Gradio APP 支持
从 PaddleHub 2.3.1 开始支持使用链接 http://127.0.0.1:8866/gradio/humanseg_lite 在浏览器中访问 humanseg_lite 的 Gradio APP。
## 五、更新历史
...
...
@@ -247,6 +250,10 @@
移除 Fluid API
*
1.3.0
添加 Gradio APP 支持
```shell
$ hub install humanseg_lite == 1.
2
.0
$ hub install humanseg_lite == 1.
3
.0
```
modules/image/semantic_segmentation/humanseg_lite/README_en.md
浏览文件 @
e301f567
...
...
@@ -230,6 +230,8 @@
cv2.imwrite("segment_human_lite.png", rgba)
```
-
### Gradio APP support
Starting with PaddleHub 2.3.1, the Gradio APP for humanseg_lite is supported to be accessed in the browser using the link http://127.0.0.1:8866/gradio/humanseg_lite.
## V. Release Note
...
...
@@ -251,6 +253,10 @@
Remove Fluid API
*
1.3.0
Add Gradio APP support.
```shell
$ hub install humanseg_lite == 1.
2
.0
$ hub install humanseg_lite == 1.
3
.0
```
modules/image/semantic_segmentation/humanseg_lite/module.py
浏览文件 @
e301f567
...
...
@@ -12,32 +12,39 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
ast
import
os
import
os.path
as
osp
import
argparse
import
cv2
import
numpy
as
np
import
paddle
import
paddle.jit
import
paddle.static
from
paddle.inference
import
Config
,
create_predictor
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
.processor
import
postprocess
,
base64_to_cv2
,
cv2_to_base64
,
check_dir
from
.data_feed
import
reader
,
preprocess_v
from
.optimal
import
postprocess_v
,
threshold_mask
@
moduleinfo
(
name
=
"humanseg_lite"
,
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
.data_feed
import
preprocess_v
from
.data_feed
import
reader
from
.optimal
import
postprocess_v
from
.optimal
import
threshold_mask
from
.processor
import
base64_to_cv2
from
.processor
import
check_dir
from
.processor
import
cv2_to_base64
from
.processor
import
postprocess
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.module
import
runnable
from
paddlehub.module.module
import
serving
@
moduleinfo
(
name
=
"humanseg_lite"
,
type
=
"CV/semantic_segmentation"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
"humanseg_lite is a semantic segmentation model."
,
version
=
"1.2
.0"
)
version
=
"1.3
.0"
)
class
ShufflenetHumanSeg
:
def
__init__
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
directory
,
"humanseg_lite_inference"
,
"model"
)
self
.
_set_config
()
...
...
@@ -46,8 +53,8 @@ class ShufflenetHumanSeg:
"""
predictor config setting
"""
model
=
self
.
default_pretrained_model_path
+
'.pdmodel'
params
=
self
.
default_pretrained_model_path
+
'.pdiparams'
model
=
self
.
default_pretrained_model_path
+
'.pdmodel'
params
=
self
.
default_pretrained_model_path
+
'.pdiparams'
cpu_config
=
Config
(
model
,
params
)
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_gpu
()
...
...
@@ -134,8 +141,7 @@ class ShufflenetHumanSeg:
output
=
np
.
expand_dims
(
output
[:,
1
,
:,
:],
axis
=
1
)
# postprocess one by one
for
i
in
range
(
len
(
batch_data
)):
out
=
postprocess
(
data_out
=
output
[
i
],
out
=
postprocess
(
data_out
=
output
[
i
],
org_im
=
batch_data
[
i
][
'org_im'
],
org_im_shape
=
batch_data
[
i
][
'org_im_shape'
],
org_im_path
=
batch_data
[
i
][
'org_im_path'
],
...
...
@@ -327,8 +333,7 @@ class ShufflenetHumanSeg:
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
...
...
@@ -339,8 +344,7 @@ class ShufflenetHumanSeg:
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
segment
(
paths
=
[
args
.
input_path
],
results
=
self
.
segment
(
paths
=
[
args
.
input_path
],
batch_size
=
args
.
batch_size
,
use_gpu
=
args
.
use_gpu
,
output_dir
=
args
.
output_dir
,
...
...
@@ -355,14 +359,22 @@ class ShufflenetHumanSeg:
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'humanseg_lite_output'
,
help
=
"The directory to save output images."
)
self
.
arg_config_group
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
'humanseg_lite_model'
,
help
=
"The directory to save model."
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether to save output as images."
)
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'humanseg_lite_output'
,
help
=
"The directory to save output images."
)
self
.
arg_config_group
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
'humanseg_lite_model'
,
help
=
"The directory to save model."
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether to save output as images."
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
ast
.
literal_eval
,
default
=
1
,
help
=
"batch size."
)
def
add_module_input_arg
(
self
):
...
...
@@ -371,33 +383,20 @@ class ShufflenetHumanSeg:
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to image."
)
if
__name__
==
"__main__"
:
m
=
ShufflenetHumanSeg
()
#shuffle.video_segment()
img
=
cv2
.
imread
(
'photo.jpg'
)
# res = m.segment(images=[img], visualization=True)
# print(res[0]['data'])
# m.video_segment('')
cap_video
=
cv2
.
VideoCapture
(
'video_test.mp4'
)
fps
=
cap_video
.
get
(
cv2
.
CAP_PROP_FPS
)
save_path
=
'result_frame.avi'
width
=
int
(
cap_video
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
cap_video
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
cap_out
=
cv2
.
VideoWriter
(
save_path
,
cv2
.
VideoWriter_fourcc
(
'M'
,
'J'
,
'P'
,
'G'
),
fps
,
(
width
,
height
))
prev_gray
=
None
prev_cfd
=
None
while
cap_video
.
isOpened
():
ret
,
frame_org
=
cap_video
.
read
()
if
ret
:
[
img_matting
,
prev_gray
,
prev_cfd
]
=
m
.
video_stream_segment
(
frame_org
=
frame_org
,
frame_id
=
cap_video
.
get
(
1
),
prev_gray
=
prev_gray
,
prev_cfd
=
prev_cfd
)
img_matting
=
np
.
repeat
(
img_matting
[:,
:,
np
.
newaxis
],
3
,
axis
=
2
)
bg_im
=
np
.
ones_like
(
img_matting
)
*
255
comb
=
(
img_matting
*
frame_org
+
(
1
-
img_matting
)
*
bg_im
).
astype
(
np
.
uint8
)
cap_out
.
write
(
comb
)
else
:
break
cap_video
.
release
()
cap_out
.
release
()
def
create_gradio_app
(
self
):
import
gradio
as
gr
import
tempfile
import
os
from
PIL
import
Image
def
inference
(
image
,
use_gpu
=
False
):
with
tempfile
.
TemporaryDirectory
()
as
temp_dir
:
self
.
segment
(
paths
=
[
image
],
use_gpu
=
use_gpu
,
visualization
=
True
,
output_dir
=
temp_dir
)
return
Image
.
open
(
os
.
path
.
join
(
temp_dir
,
os
.
listdir
(
temp_dir
)[
0
]))
interface
=
gr
.
Interface
(
inference
,
[
gr
.
inputs
.
Image
(
type
=
"filepath"
),
gr
.
Checkbox
(
label
=
'use_gpu'
)],
gr
.
outputs
.
Image
(
type
=
"ndarray"
),
title
=
'humanseg_lite'
)
return
interface
modules/image/semantic_segmentation/humanseg_lite/optimal.py
浏览文件 @
e301f567
...
...
@@ -32,8 +32,8 @@ def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
# 超出边界不跟踪
not_track
=
(
cur_x
<
0
)
+
(
cur_x
>=
w
)
+
(
cur_y
<
0
)
+
(
cur_y
>=
h
)
flow_bw
[
~
not_track
]
=
flow_bw
[
cur_y
[
~
not_track
],
cur_x
[
~
not_track
]]
not_track
+=
(
np
.
square
(
flow_fw
[:,
:,
0
]
+
flow_bw
[:,
:,
0
])
+
np
.
square
(
flow_fw
[:,
:,
1
]
+
flow_bw
[:,
:,
1
]))
>=
check_thres
not_track
+=
(
np
.
square
(
flow_fw
[:,
:,
0
]
+
flow_bw
[:,
:,
0
])
+
np
.
square
(
flow_fw
[:,
:,
1
]
+
flow_bw
[:,
:,
1
]))
>=
check_thres
track_cfd
[
cur_y
[
~
not_track
],
cur_x
[
~
not_track
]]
=
prev_cfd
[
~
not_track
]
is_track
[
cur_y
[
~
not_track
],
cur_x
[
~
not_track
]]
=
1
...
...
modules/image/semantic_segmentation/humanseg_lite/processor.py
浏览文件 @
e301f567
# -*- coding:utf-8 -*-
import
base64
import
os
import
time
import
base64
import
cv2
import
numpy
as
np
...
...
modules/image/semantic_segmentation/humanseg_lite/test.py
浏览文件 @
e301f567
...
...
@@ -3,15 +3,16 @@ import shutil
import
unittest
import
cv2
import
requests
import
numpy
as
np
import
paddlehub
as
hub
import
requests
import
paddlehub
as
hub
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
class
TestHubModule
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
)
->
None
:
img_url
=
'https://unsplash.com/photos/pg_WCHWSdT8/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjYyNDM2ODI4&force=true&w=640'
...
...
@@ -23,8 +24,7 @@ class TestHubModule(unittest.TestCase):
f
.
write
(
response
.
content
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
'M'
,
'J'
,
'P'
,
'G'
)
img
=
cv2
.
imread
(
'tests/test.jpg'
)
video
=
cv2
.
VideoWriter
(
'tests/test.avi'
,
fourcc
,
20.0
,
tuple
(
img
.
shape
[:
2
]))
video
=
cv2
.
VideoWriter
(
'tests/test.avi'
,
fourcc
,
20.0
,
tuple
(
img
.
shape
[:
2
]))
for
i
in
range
(
40
):
video
.
write
(
img
)
video
.
release
()
...
...
@@ -38,101 +38,65 @@ class TestHubModule(unittest.TestCase):
shutil
.
rmtree
(
'humanseg_lite_video_result'
)
def
test_segment1
(
self
):
results
=
self
.
module
.
segment
(
paths
=
[
'tests/test.jpg'
],
use_gpu
=
False
,
visualization
=
False
)
results
=
self
.
module
.
segment
(
paths
=
[
'tests/test.jpg'
],
use_gpu
=
False
,
visualization
=
False
)
self
.
assertIsInstance
(
results
[
0
][
'data'
],
np
.
ndarray
)
def
test_segment2
(
self
):
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
False
,
visualization
=
False
)
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
False
,
visualization
=
False
)
self
.
assertIsInstance
(
results
[
0
][
'data'
],
np
.
ndarray
)
def
test_segment3
(
self
):
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
False
,
visualization
=
True
)
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
False
,
visualization
=
True
)
self
.
assertIsInstance
(
results
[
0
][
'data'
],
np
.
ndarray
)
def
test_segment4
(
self
):
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
True
,
visualization
=
False
)
results
=
self
.
module
.
segment
(
images
=
[
cv2
.
imread
(
'tests/test.jpg'
)],
use_gpu
=
True
,
visualization
=
False
)
self
.
assertIsInstance
(
results
[
0
][
'data'
],
np
.
ndarray
)
def
test_segment5
(
self
):
self
.
assertRaises
(
AssertionError
,
self
.
module
.
segment
,
paths
=
[
'no.jpg'
]
)
self
.
assertRaises
(
AssertionError
,
self
.
module
.
segment
,
paths
=
[
'no.jpg'
])
def
test_segment6
(
self
):
self
.
assertRaises
(
AttributeError
,
self
.
module
.
segment
,
images
=
[
'test.jpg'
]
)
self
.
assertRaises
(
AttributeError
,
self
.
module
.
segment
,
images
=
[
'test.jpg'
])
def
test_video_stream_segment1
(
self
):
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
frame_id
=
1
,
prev_gray
=
None
,
prev_cfd
=
None
,
use_gpu
=
False
)
use_gpu
=
False
)
self
.
assertIsInstance
(
img_matting
,
np
.
ndarray
)
self
.
assertIsInstance
(
cur_gray
,
np
.
ndarray
)
self
.
assertIsInstance
(
optflow_map
,
np
.
ndarray
)
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
frame_id
=
2
,
prev_gray
=
cur_gray
,
prev_cfd
=
optflow_map
,
use_gpu
=
False
)
use_gpu
=
False
)
self
.
assertIsInstance
(
img_matting
,
np
.
ndarray
)
self
.
assertIsInstance
(
cur_gray
,
np
.
ndarray
)
self
.
assertIsInstance
(
optflow_map
,
np
.
ndarray
)
def
test_video_stream_segment2
(
self
):
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
frame_id
=
1
,
prev_gray
=
None
,
prev_cfd
=
None
,
use_gpu
=
True
)
use_gpu
=
True
)
self
.
assertIsInstance
(
img_matting
,
np
.
ndarray
)
self
.
assertIsInstance
(
cur_gray
,
np
.
ndarray
)
self
.
assertIsInstance
(
optflow_map
,
np
.
ndarray
)
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
img_matting
,
cur_gray
,
optflow_map
=
self
.
module
.
video_stream_segment
(
frame_org
=
cv2
.
imread
(
'tests/test.jpg'
),
frame_id
=
2
,
prev_gray
=
cur_gray
,
prev_cfd
=
optflow_map
,
use_gpu
=
True
)
use_gpu
=
True
)
self
.
assertIsInstance
(
img_matting
,
np
.
ndarray
)
self
.
assertIsInstance
(
cur_gray
,
np
.
ndarray
)
self
.
assertIsInstance
(
optflow_map
,
np
.
ndarray
)
def
test_video_segment1
(
self
):
self
.
module
.
video_segment
(
video_path
=
"tests/test.avi"
,
use_gpu
=
False
,
save_dir
=
'humanseg_lite_video_result'
)
self
.
module
.
video_segment
(
video_path
=
"tests/test.avi"
,
use_gpu
=
False
,
save_dir
=
'humanseg_lite_video_result'
)
def
test_save_inference_model
(
self
):
self
.
module
.
save_inference_model
(
'./inference/model'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录