diff --git a/modules/image/Image_gan/style_transfer/face_parse/README.md b/modules/image/Image_gan/style_transfer/face_parse/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a894d55f5c4a23fd6b29d2af9d1cdfd333a6c15e --- /dev/null +++ b/modules/image/Image_gan/style_transfer/face_parse/README.md @@ -0,0 +1,133 @@ +# face_parse + +|模型名称|face_parse| +| :--- | :---: | +|类别|图像 - 人脸解析| +|网络|BiSeNet| +|数据集|-| +|是否支持Fine-tuning|否| +|模型大小|77MB| +|最新更新日期|2021-12-07| +|数据指标|-| + + +## 一、模型基本信息 + +- ### 应用效果展示 + - 样例结果示例: +

+ +
+ 输入图像 +
+ +
+ 输出图像 +
+

+ +- ### 模型介绍 + + - 人脸解析是语义图像分割的一种特殊情况,人脸解析是计算人脸图像中不同语义成分(如头发、嘴唇、鼻子、眼睛等)的像素级标签映射。给定一个输入的人脸图像,人脸解析将为每个语义成分分配一个像素级标签。 + + + +## 二、安装 + +- ### 1、环境依赖 + - ppgan + - dlib + +- ### 2、安装 + + - ```shell + $ hub install face_parse + ``` + - 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md) + | [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md) + +## 三、模型API预测 + +- ### 1、命令行预测 + + - ```shell + # Read from a file + $ hub run face_parse --input_path "/PATH/TO/IMAGE" + ``` + - 通过命令行方式实现人脸解析模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst) + +- ### 2、预测代码示例 + + - ```python + import paddlehub as hub + + module = hub.Module(name="face_parse") + input_path = ["/PATH/TO/IMAGE"] + # Read from a file + module.style_transfer(paths=input_path, output_dir='./transfer_result/', use_gpu=True) + ``` + +- ### 3、API + + - ```python + style_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True): + ``` + - 人脸解析转换API。 + + - **参数** + + - images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];
+ - paths (list\[str\]): 图片的路径;
+ - output\_dir (str): 结果保存的路径;
+ - use\_gpu (bool): 是否使用 GPU;
+ - visualization(bool): 是否保存结果到本地文件夹 + + +## 四、服务部署 + +- PaddleHub Serving可以部署一个在线人脸解析转换服务。 + +- ### 第一步:启动PaddleHub Serving + + - 运行启动命令: + - ```shell + $ hub serving start -m face_parse + ``` + + - 这样就完成了一个人脸解析转换的在线服务API的部署,默认端口号为8866。 + + - **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。 + +- ### 第二步:发送预测请求 + + - 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果 + + - ```python + import requests + import json + import cv2 + import base64 + + + def cv2_to_base64(image): + data = cv2.imencode('.jpg', image)[1] + return base64.b64encode(data.tostring()).decode('utf8') + + # 发送HTTP请求 + data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]} + headers = {"Content-type": "application/json"} + url = "http://127.0.0.1:8866/predict/face_parse" + r = requests.post(url=url, headers=headers, data=json.dumps(data)) + + # 打印预测结果 + print(r.json()["results"]) + +## 五、更新历史 + +* 1.0.0 + + 初始发布 + + - ```shell + $ hub install face_parse==1.0.0 + ``` diff --git a/modules/image/Image_gan/style_transfer/face_parse/model.py b/modules/image/Image_gan/style_transfer/face_parse/model.py new file mode 100644 index 0000000000000000000000000000000000000000..c5df633416cd0ddc199bbb4bc7908e9dec008c58 --- /dev/null +++ b/modules/image/Image_gan/style_transfer/face_parse/model.py @@ -0,0 +1,51 @@ +# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +import argparse + +from PIL import Image +import numpy as np +import cv2 + +import ppgan.faceutils as futils +from ppgan.utils.preprocess import * +from ppgan.utils.visual import mask2image + + +class FaceParsePredictor: + def __init__(self): + self.input_size = (512, 512) + self.up_ratio = 0.6 / 0.85 + self.down_ratio = 0.2 / 0.85 + self.width_ratio = 0.2 / 0.85 + self.face_parser = futils.mask.FaceParser() + + def run(self, image): + image = Image.fromarray(image) + face = futils.dlib.detect(image) + + if not face: + return + face_on_image = face[0] + image, face, crop_face = futils.dlib.crop(image, face_on_image, self.up_ratio, self.down_ratio, + self.width_ratio) + np_image = np.array(image) + mask = self.face_parser.parse(np.float32(cv2.resize(np_image, self.input_size))) + mask = cv2.resize(mask.numpy(), (256, 256)) + mask = mask.astype(np.uint8) + mask = mask2image(mask) + + return mask diff --git a/modules/image/Image_gan/style_transfer/face_parse/module.py b/modules/image/Image_gan/style_transfer/face_parse/module.py new file mode 100644 index 0000000000000000000000000000000000000000..13bfdad5cd9ba46d91e11b25d8071b1f542a4bfb --- /dev/null +++ b/modules/image/Image_gan/style_transfer/face_parse/module.py @@ -0,0 +1,131 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import copy + +import paddle +import paddlehub as hub +from paddlehub.module.module import moduleinfo, runnable, serving +import numpy as np +import cv2 +from skimage.io import imread +from skimage.transform import rescale, resize + +from .model import FaceParsePredictor +from .util import base64_to_cv2 + + +@moduleinfo( + name="face_parse", type="CV/style_transfer", author="paddlepaddle", author_email="", summary="", version="1.0.0") +class Face_parse: + def __init__(self): + self.pretrained_model = os.path.join(self.directory, "bisenet.pdparams") + + self.network = FaceParsePredictor() + + def style_transfer(self, + images=None, + paths=None, + output_dir='./transfer_result/', + use_gpu=False, + visualization=True): + ''' + + + images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2). + paths (list[str]): paths to images + output_dir: the dir to save the results + use_gpu: if True, use gpu to perform the computation, otherwise cpu. + visualization: if True, save results in output_dir. + ''' + results = [] + paddle.disable_static() + place = 'gpu:0' if use_gpu else 'cpu' + place = paddle.set_device(place) + if images == None and paths == None: + print('No image provided. Please input an image or a image path.') + return + + if images != None: + for image in images: + image = image[:, :, ::-1] + out = self.network.run(image) + results.append(out) + + if paths != None: + for path in paths: + image = cv2.imread(path)[:, :, ::-1] + out = self.network.run(image) + results.append(out) + + if visualization == True: + if not os.path.exists(output_dir): + os.makedirs(output_dir, exist_ok=True) + for i, out in enumerate(results): + if out is not None: + cv2.imwrite(os.path.join(output_dir, 'output_{}.png'.format(i)), out[:, :, ::-1]) + + return results + + @runnable + def run_cmd(self, argvs: list): + """ + Run as a command. + """ + self.parser = argparse.ArgumentParser( + description="Run the {} module.".format(self.name), + prog='hub run {}'.format(self.name), + usage='%(prog)s', + add_help=True) + + self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required") + self.arg_config_group = self.parser.add_argument_group( + title="Config options", description="Run configuration for controlling module behavior, not required.") + self.add_module_config_arg() + self.add_module_input_arg() + self.args = self.parser.parse_args(argvs) + results = self.style_transfer( + paths=[self.args.input_path], + output_dir=self.args.output_dir, + use_gpu=self.args.use_gpu, + visualization=self.args.visualization) + return results + + @serving + def serving_method(self, images, **kwargs): + """ + Run as a service. + """ + images_decode = [base64_to_cv2(image) for image in images] + results = self.style_transfer(images=images_decode, **kwargs) + tolist = [result.tolist() for result in results] + return tolist + + def add_module_config_arg(self): + """ + Add the command config options. + """ + self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not") + + self.arg_config_group.add_argument( + '--output_dir', type=str, default='transfer_result', help='output directory for saving result.') + self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.') + + def add_module_input_arg(self): + """ + Add the command input options. + """ + self.arg_input_group.add_argument('--input_path', type=str, help="path to input image.") diff --git a/modules/image/Image_gan/style_transfer/face_parse/requirements.txt b/modules/image/Image_gan/style_transfer/face_parse/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d9bfc85782a3ee323241fe7beb87a9f281c120fe --- /dev/null +++ b/modules/image/Image_gan/style_transfer/face_parse/requirements.txt @@ -0,0 +1,2 @@ +ppgan +dlib diff --git a/modules/image/Image_gan/style_transfer/face_parse/util.py b/modules/image/Image_gan/style_transfer/face_parse/util.py new file mode 100644 index 0000000000000000000000000000000000000000..b88ac3562b74cadc1d4d6459a56097ca4a938a0b --- /dev/null +++ b/modules/image/Image_gan/style_transfer/face_parse/util.py @@ -0,0 +1,10 @@ +import base64 +import cv2 +import numpy as np + + +def base64_to_cv2(b64str): + data = base64.b64decode(b64str.encode('utf8')) + data = np.fromstring(data, np.uint8) + data = cv2.imdecode(data, cv2.IMREAD_COLOR) + return data