Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
dae2ef9b
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dae2ef9b
编写于
4月 10, 2019
作者:
Z
Zeyu Chen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add more ernie classfication task and dataset
上级
a86073f0
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
436 addition
and
12 deletion
+436
-12
demo/ernie-classification/question_answering.py
demo/ernie-classification/question_answering.py
+97
-0
demo/ernie-classification/question_matching.py
demo/ernie-classification/question_matching.py
+97
-0
demo/ernie-classification/run_question_answering.sh
demo/ernie-classification/run_question_answering.sh
+10
-0
demo/ernie-classification/run_question_matching.sh
demo/ernie-classification/run_question_matching.sh
+10
-0
demo/ernie-classification/run_sentiment_cls.sh
demo/ernie-classification/run_sentiment_cls.sh
+2
-2
demo/ernie-classification/sentiment_cls.py
demo/ernie-classification/sentiment_cls.py
+2
-1
paddlehub/dataset/__init__.py
paddlehub/dataset/__init__.py
+1
-0
paddlehub/dataset/chnsenticorp.py
paddlehub/dataset/chnsenticorp.py
+11
-6
paddlehub/dataset/dataset.py
paddlehub/dataset/dataset.py
+24
-0
paddlehub/dataset/lcqmc.py
paddlehub/dataset/lcqmc.py
+84
-0
paddlehub/dataset/msra_ner.py
paddlehub/dataset/msra_ner.py
+7
-2
paddlehub/dataset/nlpcc_dbqa.py
paddlehub/dataset/nlpcc_dbqa.py
+84
-0
paddlehub/finetune/evaluate.py
paddlehub/finetune/evaluate.py
+2
-0
paddlehub/reader/nlp_reader.py
paddlehub/reader/nlp_reader.py
+5
-1
未找到文件。
demo/ernie-classification/question_answering.py
0 → 100644
浏览文件 @
dae2ef9b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"Total examples' number in batch for training."
)
args
=
parser
.
parse_args
()
# yapf: enable.
if
__name__
==
'__main__'
:
# Select a finetune strategy
strategy
=
hub
.
BERTFinetuneStrategy
(
weight_decay
=
args
.
weight_decay
,
learning_rate
=
args
.
learning_rate
,
warmup_strategy
=
"linear_warmup_decay"
,
)
# Setup runing config for PaddleHub Finetune API
config
=
hub
.
RunConfig
(
eval_interval
=
100
,
use_cuda
=
True
,
num_epoch
=
args
.
num_epoch
,
batch_size
=
args
.
batch_size
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
strategy
)
# loading Paddlehub ERNIE pretrained model
module
=
hub
.
Module
(
name
=
"ernie"
)
# Sentence classification dataset reader
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
hub
.
dataset
.
NLPCC_DBQA
(),
# download NLPCC_DBQA dataset
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
num_labels
=
len
(
reader
.
get_labels
())
input_dict
,
output_dict
,
program
=
module
.
context
(
sign_name
=
"tokens"
,
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
with
fluid
.
program_guard
(
program
):
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_outputs" for token-level output.
pooled_output
=
output_dict
[
"pooled_output"
]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list
=
[
input_dict
[
"input_ids"
].
name
,
input_dict
[
"position_ids"
].
name
,
input_dict
[
"segment_ids"
].
name
,
input_dict
[
"input_mask"
].
name
,
label
.
name
]
# Define a classfication finetune task by PaddleHub's API
cls_task
=
hub
.
create_text_classification_task
(
pooled_output
,
label
,
num_classes
=
num_labels
)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
hub
.
finetune_and_eval
(
task
=
cls_task
,
data_reader
=
reader
,
feed_list
=
feed_list
,
config
=
config
)
demo/ernie-classification/question_matching.py
0 → 100644
浏览文件 @
dae2ef9b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
argparse
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
# yapf: disable
parser
=
argparse
.
ArgumentParser
(
__doc__
)
parser
.
add_argument
(
"--num_epoch"
,
type
=
int
,
default
=
3
,
help
=
"Number of epoches for fine-tuning."
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
5e-5
,
help
=
"Learning rate used to train with warmup."
)
parser
.
add_argument
(
"--hub_module_dir"
,
type
=
str
,
default
=
None
,
help
=
"PaddleHub module directory"
)
parser
.
add_argument
(
"--weight_decay"
,
type
=
float
,
default
=
0.01
,
help
=
"Weight decay rate for L2 regularizer."
)
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
None
,
help
=
"Path to training data."
)
parser
.
add_argument
(
"--checkpoint_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory to model checkpoint"
)
parser
.
add_argument
(
"--max_seq_len"
,
type
=
int
,
default
=
512
,
help
=
"Number of words of the longest seqence."
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"Total examples' number in batch for training."
)
args
=
parser
.
parse_args
()
# yapf: enable.
if
__name__
==
'__main__'
:
# Select a finetune strategy
strategy
=
hub
.
BERTFinetuneStrategy
(
weight_decay
=
args
.
weight_decay
,
learning_rate
=
args
.
learning_rate
,
warmup_strategy
=
"linear_warmup_decay"
,
)
# Setup runing config for PaddleHub Finetune API
config
=
hub
.
RunConfig
(
eval_interval
=
100
,
use_cuda
=
True
,
num_epoch
=
args
.
num_epoch
,
batch_size
=
args
.
batch_size
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
strategy
)
# loading Paddlehub ERNIE pretrained model
module
=
hub
.
Module
(
name
=
"ernie"
)
# Sentence classification dataset reader
reader
=
hub
.
reader
.
ClassifyReader
(
dataset
=
hub
.
dataset
.
LCQMC
(),
# download LCQMC dataset
vocab_path
=
module
.
get_vocab_path
(),
max_seq_len
=
args
.
max_seq_len
)
num_labels
=
len
(
reader
.
get_labels
())
input_dict
,
output_dict
,
program
=
module
.
context
(
sign_name
=
"tokens"
,
trainable
=
True
,
max_seq_len
=
args
.
max_seq_len
)
with
fluid
.
program_guard
(
program
):
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_outputs" for token-level output.
pooled_output
=
output_dict
[
"pooled_output"
]
# Setup feed list for data feeder
# Must feed all the tensor of ERNIE's module need
feed_list
=
[
input_dict
[
"input_ids"
].
name
,
input_dict
[
"position_ids"
].
name
,
input_dict
[
"segment_ids"
].
name
,
input_dict
[
"input_mask"
].
name
,
label
.
name
]
# Define a classfication finetune task by PaddleHub's API
cls_task
=
hub
.
create_text_classification_task
(
pooled_output
,
label
,
num_classes
=
num_labels
)
# Finetune and evaluate by PaddleHub's API
# will finish training, evaluation, testing, save model automatically
hub
.
finetune_and_eval
(
task
=
cls_task
,
data_reader
=
reader
,
feed_list
=
feed_list
,
config
=
config
)
demo/ernie-classification/run_question_answering.sh
0 → 100644
浏览文件 @
dae2ef9b
export
CUDA_VISIBLE_DEVICES
=
3
CKPT_DIR
=
"./ckpt_dbqa"
python
-u
question_answering.py
\
--batch_size
8
\
--weight_decay
0.01
\
--checkpoint_dir
$CKPT_DIR
\
--num_epoch
3
\
--max_seq_len
512
\
--learning_rate
2e-5
demo/ernie-classification/run_question_matching.sh
0 → 100644
浏览文件 @
dae2ef9b
export
CUDA_VISIBLE_DEVICES
=
0
CKPT_DIR
=
"./ckpt_question_matching"
python
-u
sentiment_cls.py
\
--batch_size
32
\
--weight_decay
0.00
\
--checkpoint_dir
$CKPT_DIR
\
--num_epoch
3
\
--max_seq_len
128
\
--learning_rate
2e-5
demo/ernie-classification/run_
fintune_with_hub
.sh
→
demo/ernie-classification/run_
sentiment_cls
.sh
浏览文件 @
dae2ef9b
export
CUDA_VISIBLE_DEVICES
=
3
CKPT_DIR
=
"./ckpt"
python
-u
finetune_with_hub
.py
\
CKPT_DIR
=
"./ckpt
_sentiment_cls
"
python
-u
sentiment_cls
.py
\
--batch_size
32
\
--weight_decay
0.01
\
--checkpoint_dir
$CKPT_DIR
\
...
...
demo/ernie-classification/
finetune_with_hub
.py
→
demo/ernie-classification/
sentiment_cls
.py
浏览文件 @
dae2ef9b
...
...
@@ -49,10 +49,11 @@ if __name__ == '__main__':
# Setup runing config for PaddleHub Finetune API
config
=
hub
.
RunConfig
(
eval_interval
=
10
,
eval_interval
=
10
0
,
use_cuda
=
True
,
num_epoch
=
args
.
num_epoch
,
batch_size
=
args
.
batch_size
,
checkpoint_dir
=
args
.
checkpoint_dir
,
strategy
=
strategy
)
# loading Paddlehub ERNIE pretrained model
...
...
paddlehub/dataset/__init__.py
浏览文件 @
dae2ef9b
...
...
@@ -15,5 +15,6 @@
from
.dataset
import
InputExample
,
HubDataset
from
.chnsenticorp
import
ChnSentiCorp
from
.msra_ner
import
MSRA_NER
from
.nlpcc_dbqa
import
NLPCC_DBQA
from
.dogcat
import
DogCatDataset
as
DogCat
from
.flowers
import
FlowersDataset
as
Flowers
paddlehub/dataset/chnsenticorp.py
浏览文件 @
dae2ef9b
...
...
@@ -16,12 +16,12 @@ from collections import namedtuple
import
os
import
csv
from
paddlehub.dataset
import
InputExample
from
paddlehub.dataset
import
HubDataset
from
paddlehub.dataset
import
InputExample
,
HubDataset
from
paddlehub.common.downloader
import
default_downloader
from
paddlehub.common.dir
import
DATA_HOME
from
paddlehub.common.logger
import
logger
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/chnsenticorp
_data
.tar.gz"
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/chnsenticorp.tar.gz"
class
ChnSentiCorp
(
HubDataset
):
...
...
@@ -31,8 +31,12 @@ class ChnSentiCorp(HubDataset):
"""
def
__init__
(
self
):
self
.
dataset_dir
=
os
.
path
.
join
(
DATA_HOME
,
"chnsenticorp"
)
if
not
os
.
path
.
exists
(
self
.
dataset_dir
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
else
:
logger
.
info
(
"Dataset {} already cached."
.
format
(
self
.
dataset_dir
))
self
.
_load_train_examples
()
self
.
_load_test_examples
()
...
...
@@ -69,6 +73,7 @@ class ChnSentiCorp(HubDataset):
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
examples
=
[]
seq_id
=
0
header
=
next
(
reader
)
# skip header
for
line
in
reader
:
example
=
InputExample
(
guid
=
seq_id
,
label
=
line
[
0
],
text_a
=
line
[
1
])
...
...
@@ -81,4 +86,4 @@ class ChnSentiCorp(HubDataset):
if
__name__
==
"__main__"
:
ds
=
ChnSentiCorp
()
for
e
in
ds
.
get_train_examples
():
print
(
e
)
print
(
"{}
\t
{}
\t
{}
\t
{}"
.
format
(
e
.
guid
,
e
.
text_a
,
e
.
text_b
,
e
.
label
)
)
paddlehub/dataset/dataset.py
浏览文件 @
dae2ef9b
...
...
@@ -13,6 +13,30 @@
# limitations under the License.
class
InputExample
(
object
):
"""
Input data structure of BERT/ERNIE, can satisfy single sequence task like
text classification, sequence lableing; Sequence pair task like dialog
task.
"""
def
__init__
(
self
,
guid
,
text_a
,
text_b
=
None
,
label
=
None
):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self
.
guid
=
guid
self
.
text_a
=
text_a
self
.
text_b
=
text_b
self
.
label
=
label
class
HubDataset
(
object
):
def
get_train_examples
(
self
):
raise
NotImplementedError
()
...
...
paddlehub/dataset/lcqmc.py
0 → 100644
浏览文件 @
dae2ef9b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
namedtuple
import
os
import
csv
from
paddlehub.dataset
import
InputExample
,
HubDataset
from
paddlehub.common.downloader
import
default_downloader
from
paddlehub.common.dir
import
DATA_HOME
from
paddlehub.common.logger
import
logger
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/lcqmc.tar.gz"
class
NLPCC_DBQA
(
HubDataset
):
def
__init__
(
self
):
self
.
dataset_dir
=
os
.
path
.
join
(
DATA_HOME
,
"lcqmc"
)
if
not
os
.
path
.
exists
(
self
.
dataset_dir
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
else
:
logger
.
info
(
"Dataset {} already cached."
.
format
(
self
.
dataset_dir
))
self
.
_load_train_examples
()
self
.
_load_test_examples
()
self
.
_load_dev_examples
()
def
_load_train_examples
(
self
):
self
.
train_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"train.tsv"
)
self
.
train_examples
=
self
.
_read_tsv
(
self
.
train_file
)
def
_load_dev_examples
(
self
):
self
.
dev_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"dev.tsv"
)
self
.
dev_examples
=
self
.
_read_tsv
(
self
.
dev_file
)
def
_load_test_examples
(
self
):
self
.
test_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"test.tsv"
)
self
.
test_examples
=
self
.
_read_tsv
(
self
.
test_file
)
def
get_train_examples
(
self
):
return
self
.
train_examples
def
get_dev_examples
(
self
):
return
self
.
dev_examples
def
get_test_examples
(
self
):
return
self
.
test_examples
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
examples
=
[]
seq_id
=
0
header
=
next
(
reader
)
# skip header
for
line
in
reader
:
example
=
InputExample
(
guid
=
seq_id
,
label
=
line
[
2
],
text_a
=
line
[
0
],
text_b
=
line
[
1
])
seq_id
+=
1
examples
.
append
(
example
)
return
examples
if
__name__
==
"__main__"
:
ds
=
NLPCC_DBQA
()
for
e
in
ds
.
get_train_examples
():
print
(
"{}
\t
{}
\t
{}
\t
{}"
.
format
(
e
.
guid
,
e
.
text_a
,
e
.
text_b
,
e
.
label
))
paddlehub/dataset/msra_ner.py
浏览文件 @
dae2ef9b
...
...
@@ -19,14 +19,19 @@ from collections import namedtuple
from
paddlehub.common.downloader
import
default_downloader
from
paddlehub.common.dir
import
DATA_HOME
from
paddlehub.common.logger
import
logger
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/msra_ner.tar.gz"
class
MSRA_NER
(
object
):
def
__init__
(
self
):
self
.
dataset_dir
=
os
.
path
.
join
(
DATA_HOME
,
"msra_ner"
)
if
not
os
.
path
.
exists
(
self
.
dataset_dir
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
else
:
logger
.
info
(
"Dataset {} already cached."
.
format
(
self
.
dataset_dir
))
self
.
_load_label_map
()
self
.
_load_train_examples
()
...
...
paddlehub/dataset/nlpcc_dbqa.py
0 → 100644
浏览文件 @
dae2ef9b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
namedtuple
import
os
import
csv
from
paddlehub.dataset
import
InputExample
,
HubDataset
from
paddlehub.common.downloader
import
default_downloader
from
paddlehub.common.dir
import
DATA_HOME
from
paddlehub.common.logger
import
logger
DATA_URL
=
"https://paddlehub-dataset.bj.bcebos.com/nlpcc-dbqa.tar.gz"
class
NLPCC_DBQA
(
HubDataset
):
def
__init__
(
self
):
self
.
dataset_dir
=
os
.
path
.
join
(
DATA_HOME
,
"nlpcc-dbqa"
)
if
not
os
.
path
.
exists
(
self
.
dataset_dir
):
ret
,
tips
,
self
.
dataset_dir
=
default_downloader
.
download_file_and_uncompress
(
url
=
DATA_URL
,
save_path
=
DATA_HOME
,
print_progress
=
True
)
else
:
logger
.
info
(
"Dataset {} already cached."
.
format
(
self
.
dataset_dir
))
self
.
_load_train_examples
()
self
.
_load_test_examples
()
self
.
_load_dev_examples
()
def
_load_train_examples
(
self
):
self
.
train_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"train.tsv"
)
self
.
train_examples
=
self
.
_read_tsv
(
self
.
train_file
)
def
_load_dev_examples
(
self
):
self
.
dev_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"dev.tsv"
)
self
.
dev_examples
=
self
.
_read_tsv
(
self
.
dev_file
)
def
_load_test_examples
(
self
):
self
.
test_file
=
os
.
path
.
join
(
self
.
dataset_dir
,
"test.tsv"
)
self
.
test_examples
=
self
.
_read_tsv
(
self
.
test_file
)
def
get_train_examples
(
self
):
return
self
.
train_examples
def
get_dev_examples
(
self
):
return
self
.
dev_examples
def
get_test_examples
(
self
):
return
self
.
test_examples
def
get_labels
(
self
):
"""See base class."""
return
[
"0"
,
"1"
]
def
_read_tsv
(
self
,
input_file
,
quotechar
=
None
):
"""Reads a tab separated value file."""
with
open
(
input_file
,
"r"
)
as
f
:
reader
=
csv
.
reader
(
f
,
delimiter
=
"
\t
"
,
quotechar
=
quotechar
)
examples
=
[]
seq_id
=
0
header
=
next
(
reader
)
# skip header
for
line
in
reader
:
example
=
InputExample
(
guid
=
seq_id
,
label
=
line
[
3
],
text_a
=
line
[
1
],
text_b
=
line
[
2
])
seq_id
+=
1
examples
.
append
(
example
)
return
examples
if
__name__
==
"__main__"
:
ds
=
NLPCC_DBQA
()
for
e
in
ds
.
get_train_examples
():
print
(
"{}
\t
{}
\t
{}
\t
{}"
.
format
(
e
.
guid
,
e
.
text_a
,
e
.
text_b
,
e
.
label
))
paddlehub/finetune/evaluate.py
浏览文件 @
dae2ef9b
...
...
@@ -48,6 +48,8 @@ def evaluate_cls_task(task, data_reader, feed_list, phase="test", config=None):
feed
=
data_feeder
.
feed
(
batch
),
fetch_list
=
[
loss
.
name
,
accuracy
.
name
])
num_eval_examples
+=
num_batch_examples
if
num_eval_examples
%
10000
==
0
:
logger
.
info
(
"{} examples evaluated."
.
format
(
num_eval_examples
))
acc_sum
+=
accuracy_v
*
num_batch_examples
loss_sum
+=
loss_v
*
num_batch_examples
eval_time_used
=
time
.
time
()
-
eval_time_begin
...
...
paddlehub/reader/nlp_reader.py
浏览文件 @
dae2ef9b
...
...
@@ -18,6 +18,7 @@ import numpy as np
from
collections
import
namedtuple
from
paddlehub.reader
import
tokenization
from
paddlehub.common.logger
import
logger
from
.batching
import
pad_batch_data
...
...
@@ -46,7 +47,7 @@ class BaseReader(object):
self
.
label_map
=
{}
for
index
,
label
in
enumerate
(
self
.
dataset
.
get_labels
()):
self
.
label_map
[
label
]
=
index
print
(
"Dataset label map = {}"
.
format
(
self
.
label_map
))
logger
.
info
(
"Dataset label map = {}"
.
format
(
self
.
label_map
))
self
.
current_example
=
0
self
.
current_epoch
=
0
...
...
@@ -154,6 +155,9 @@ class BaseReader(object):
position_ids
=
list
(
range
(
len
(
token_ids
)))
if
self
.
label_map
:
if
example
.
label
not
in
self
.
label_map
:
raise
KeyError
(
"example.label = {%s} not in label"
%
example
.
label
)
label_id
=
self
.
label_map
[
example
.
label
]
else
:
label_id
=
example
.
label
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录