提交 cbac164a 编写于 作者: C channingss

set model version==1.1.0

上级 6df0e934
......@@ -11,17 +11,36 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddlehub as hub
# Load mask detector module from PaddleHub
module = hub.Module(name="pyramidbox_lite_server_mask")
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0')
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_server_mask")
# rename of params
classify_param = "./pyramidbox_lite_server_mask/pyramidbox_lite/__param__"
detection_param = "./pyramidbox_lite_server_mask/mask_detector/__param__"
if os.path.isfile(detection_param):
os.system("mv " + detection_param +
" ./pyramidbox_lite_server_mask/mask_detector/__params__")
if os.path.isfile(classify_param):
os.system("mv " + classify_param +
" ./pyramidbox_lite_server_mask/pyramidbox_lite/__params__")
print("pyramidbox_lite_server_mask module export done!")
# Load mask detector (mobile version) module from PaddleHub
module = hub.Module(name="pyramidbox_lite_mobile_mask")
module = hub.Module(name="pyramidbox_lite_mobile_mask", version="1.1.0")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_mobile_mask")
# rename of params
classify_param = "./pyramidbox_lite_mobile_mask/pyramidbox_lite/__param__"
detection_param = "./pyramidbox_lite_mobile_mask/mask_detector/__param__"
if os.path.isfile(detection_param):
os.system("mv " + detection_param +
" ./pyramidbox_lite_mobile_mask/mask_detector/__params__")
if os.path.isfile(classify_param):
os.system("mv " + classify_param +
" ./pyramidbox_lite_mobile_mask/pyramidbox_lite/__params__")
print("pyramidbox_lite_mobile_mask module export done!")
......@@ -11,17 +11,36 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddlehub as hub
# Load mask detector module from PaddleHub
module = hub.Module(name="pyramidbox_lite_server_mask")
module = hub.Module(name="pyramidbox_lite_server_mask", version='1.1.0')
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_server_mask")
# rename of params
classify_param = "./pyramidbox_lite_server_mask/pyramidbox_lite/__param__"
detection_param = "./pyramidbox_lite_server_mask/mask_detector/__param__"
if os.path.isfile(detection_param):
os.system("mv " + detection_param +
" ./pyramidbox_lite_server_mask/mask_detector/__params__")
if os.path.isfile(classify_param):
os.system("mv " + classify_param +
" ./pyramidbox_lite_server_mask/pyramidbox_lite/__params__")
print("pyramidbox_lite_server_mask module export done!")
# Load mask detector (mobile version) module from PaddleHub
module = hub.Module(name="pyramidbox_lite_mobile_mask")
module = hub.Module(name="pyramidbox_lite_mobile_mask", version="1.1.0")
# Export inference model for deployment
module.processor.save_inference_model("./pyramidbox_lite_mobile_mask")
# rename of params
classify_param = "./pyramidbox_lite_mobile_mask/pyramidbox_lite/__param__"
detection_param = "./pyramidbox_lite_mobile_mask/mask_detector/__param__"
if os.path.isfile(detection_param):
os.system("mv " + detection_param +
" ./pyramidbox_lite_mobile_mask/mask_detector/__params__")
if os.path.isfile(classify_param):
os.system("mv " + classify_param +
" ./pyramidbox_lite_mobile_mask/pyramidbox_lite/__params__")
print("pyramidbox_lite_mobile_mask module export done!")
......@@ -33,21 +33,27 @@ import argparse
def parse_args():
parser = argparse.ArgumentParser('mask detection.')
parser.add_argument(
'--models_dir', type=str, default='', help='path of models.')
parser.add_argument(
'--img_paths', type=str, default='', help='path of images')
parser.add_argument(
'--video_path', type=str, default='', help='path of video.')
parser.add_argument(
'--video_size', type=tuple, default=(1920, 1080), help='size of video.')
parser.add_argument(
'--use_camera',
parser.add_argument('--models_dir',
type=str,
default='',
help='path of models.')
parser.add_argument('--img_paths',
type=str,
default='',
help='path of images')
parser.add_argument('--video_path',
type=str,
default='',
help='path of video.')
parser.add_argument('--video_size',
type=tuple,
default=(1920, 1080),
help='size of video.')
parser.add_argument('--use_camera',
type=bool,
default=False,
help='switch detect video or camera, default:video.')
parser.add_argument(
'--use_gpu',
parser.add_argument('--use_gpu',
type=bool,
default=False,
help='switch cpu/gpu, default:cpu.')
......@@ -102,8 +108,7 @@ class MaskClassifier:
h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0]
inputs = []
for face in faces:
im = cv2.resize(
face.rect_data, (128, 128),
im = cv2.resize(face.rect_data, (128, 128),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
......@@ -132,7 +137,7 @@ class MaskClassifier:
input_data = np.concatenate(inputs)
im_tensor = fluid.core.PaddleTensor(
input_data.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[1]
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
self.Postprocess(output_data, faces)
......@@ -146,8 +151,10 @@ class FaceDetector:
def Preprocess(self, image, shrink):
h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink)
im = cv2.resize(
image, (h, w), fx=0, fy=0, interpolation=cv2.INTER_CUBIC)
im = cv2.resize(image, (h, w),
fx=0,
fy=0,
interpolation=cv2.INTER_CUBIC)
# HWC -> CHW
im = im.swapaxes(1, 2)
im = im.swapaxes(0, 1)
......@@ -187,15 +194,13 @@ class FaceDetector:
def predict_images(args):
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
......@@ -225,15 +230,13 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False):
else:
capture = cv2.VideoCapture(args.video_path)
detector = FaceDetector(
model_dir=args.models_dir + '/pyramidbox_lite/',
detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/',
mean=[104.0, 177.0, 123.0],
scale=[0.007843, 0.007843, 0.007843],
use_gpu=args.use_gpu,
threshold=0.7)
classifier = MaskClassifier(
model_dir=args.models_dir + '/mask_detector/',
classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/',
mean=[0.5, 0.5, 0.5],
scale=[1.0, 1.0, 1.0],
use_gpu=args.use_gpu)
......@@ -244,8 +247,8 @@ def predict_video(args, im_shape=(1920, 1080), use_camera=False):
os.makedirs(path)
fps = 30
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(
os.path.join(path, 'result.mp4'), fourcc, fps, args.video_size)
writer = cv2.VideoWriter(os.path.join(path, 'result.mp4'), fourcc, fps,
args.video_size)
import time
start_time = time.time()
index = 0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册