未验证 提交 ca8541bd 编写于 作者: S Steffy-zxf 提交者: GitHub

add sequence classification with ernie/bert/roberta finetuned in dygraph

上级 060c13ec
# PaddleHub Transformer模型fine-tune文本分类(动态图)
本示例将展示如何使用PaddleHub Transformer模型(如 ERNIE、BERT、RoBERTa等模型)module 以动态图方式fine-tune并完成预测任务。
## 如何开始Fine-tune
我们以中文情感分类公开数据集ChnSentiCorp为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练,并在开发集(dev.tsv)验证。通过如下命令,即可启动训练。
```shell
# 设置使用的GPU卡号
export CUDA_VISIBLE_DEVICES=0
python train.py
```
## 代码步骤
使用PaddleHub Fine-tune API进行Fine-tune可以分为4个步骤。
### Step1: 选择模型
```python
import paddlehub as hub
model = hub.Module(name='ernie_tiny', version='2.0.0', task='sequence_classification')
```
其中,参数:
* `name`:模型名称,可以选择`ernie``ernie-tiny``bert_chinese_L-12_H-768_A-12``chinese-roberta-wwm-ext``chinese-roberta-wwm-ext-large`等。
* `version`:module版本号
* `task`:fine-tune任务。此处为`sequence_classification`,表示文本分类任务。
### Step2: 下载并加载数据集
```python
train_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='train')
dev_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='dev')
```
* `tokenizer`:表示该module所需用到的tokenizer,其将对输入文本完成切词,并转化成module运行所需模型输入格式。
* `mode`:选择数据模式,可选项有 `train`, `test`, `val`, 默认为`train`
* `max_seq_len`:ERNIE/BERT模型使用的最大序列长度,若出现显存不足,请适当调低这一参数。
### Step3: 选择优化策略和运行配置
```python
optimizer = paddle.optimizer.Adam(learning_rate=5e-5, parameters=model.parameters())
trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls')
trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset)
# 在测试集上评估当前训练模型
trainer.evaluate(test_dataset, batch_size=32)
```
#### 优化策略
Paddle2.0-rc提供了多种优化器选择,如`SGD`, `Adam`, `Adamax`等,详细参见[策略](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/api/paddle/optimizer/optimizer/Optimizer_cn.html)
其中`Adam`:
* `learning_rate`: 全局学习率。默认为1e-3;
* `parameters`: 待优化模型参数。
#### 运行配置
`Trainer` 主要控制Fine-tune的训练,包含以下可控制的参数:
* `model`: 被优化模型;
* `optimizer`: 优化器选择;
* `use_vdl`: 是否使用vdl可视化训练过程;
* `checkpoint_dir`: 保存模型参数的地址;
* `compare_metrics`: 保存最优模型的衡量指标;
`trainer.train` 主要控制具体的训练过程,包含以下可控制的参数:
* `train_dataset`: 训练时所用的数据集;
* `epochs`: 训练轮数;
* `batch_size`: 训练的批大小,如果使用GPU,请根据实际情况调整batch_size;
* `num_workers`: works的数量,默认为0;
* `eval_dataset`: 验证集;
* `log_interval`: 打印日志的间隔, 单位为执行批训练的次数。
* `save_interval`: 保存模型的间隔频次,单位为执行训练的轮数。
## 模型预测
当完成Fine-tune后,Fine-tune过程在验证集上表现最优的模型会被保存在`${CHECKPOINT_DIR}/best_model`目录下,其中`${CHECKPOINT_DIR}`目录为Fine-tune时所选择的保存checkpoint的目录。
我们以以下数据为待预测数据,使用该模型来进行预测
```text
这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般
怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片
作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。
```
```python
import paddlehub as hub
data = [
['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'],
['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'],
['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'],
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
directory='/mnt/zhangxuefei/program-paddle/PaddleHub/modules/text/language_model/ernie_tiny',
version='2.0.0',
task='sequence_classification',
load_checkpoint='./test_ernie_text_cls/best_model/model.pdparams',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text[0], results[idx]))
```
参数配置正确后,请执行脚本`python predict.py`, 加载模型具体可参见[加载](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/api/paddle/framework/io/load_cn.html#load)
### 依赖
paddlepaddle >= 2.0.0rc
paddlehub >= 2.0.0
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -11,3 +11,23 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddlehub as hub
if __name__ == '__main__':
data = [
['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'],
['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'],
['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'],
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie_tiny',
version='2.0.0',
task='sequence_classification',
load_checkpoint='./test_ernie_text_cls/best_model/model.pdparams',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text[0], results[idx]))
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -11,3 +11,21 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddlehub as hub
if __name__ == '__main__':
model = hub.Module(name='ernie_tiny', version='2.0.0', task='sequence_classification')
train_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='train')
dev_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='dev')
test_dataset = hub.datasets.ChnSentiCorp(
tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='test')
optimizer = paddle.optimizer.AdamW(learning_rate=5e-5, parameters=model.parameters())
trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls', use_gpu=True)
trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset, save_interval=1)
trainer.evaluate(test_dataset, batch_size=32)
```shell
$ hub install bert-base-cased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-cased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-base-cased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-base-cased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-base-cased",
version="2.0.0",
summary=
"bert_cased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path='bert-base-cased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-cased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-base-cased', 'bert-base-cased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-cased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-base-cased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
encoded_inputs = tokenizer.encode(text, pad_to_max_seq_len=False)
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-base-chinese==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-chinese',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-base-chinese
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-base-chinese"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-base-chinese",
version="2.0.0",
summary=
"bert_chinese_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
Bert model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='bert-base-chinese')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-chinese')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-base-chinese', 'bert-base-chinese-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-chinese-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-base-chinese'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-base-multilingual-cased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-multilingual-cased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-base-multilingual-cased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-base-multilingual-cased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-base-multilingual-cased",
version="2.0.0",
summary=
"bert_multi_cased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='bert-base-multilingual-cased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-multilingual-cased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-base-multilingual-cased', 'bert-base-multilingual-cased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-multilingual-cased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-base-multilingual-cased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-base-multilingual-uncased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-multilingual-uncased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-base-multilingual-uncased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-base-multilingual-uncased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-base-multilingual-uncased",
version="2.0.0",
summary=
"bert_multi_uncased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='bert-base-multilingual-uncased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-multilingual-uncased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-base-multilingual-uncased',
'bert-base-multilingual-uncased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-multilingual-uncased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-base-multilingual-uncased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-base-uncased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-base-uncased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-base-uncased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-base-uncased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-base-uncased",
version="2.0.0",
summary=
"bert_uncased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='bert-base-uncased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-base-uncased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-base-uncased', 'bert-base-uncased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-uncased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-base-uncased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-large-cased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-large-cased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-large-cased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-large-cased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-large-cased",
version="2.0.0",
summary=
"bert_cased_L-24_H-1024_A-16, 24-layer, 1024-hidden, 16-heads, 340M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path='bert-large-cased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-large-cased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-large-cased', 'bert-large-cased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-large-cased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-large-cased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert-large-uncased==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='bert-large-画丶cased',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m bert-large-uncased
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/bert-large-uncased"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_bert import BertForSequenceClassification, BertModel
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="bert-large-uncased",
version="2.0.0",
summary=
"bert_uncased_L-24_H-1024_A-16, 24-layer, 1024-hidden, 16-heads, 340M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model")
class Bert(nn.Layer):
"""
BERT model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Bert, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = BertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='bert-large-uncased')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = BertModel.from_pretrained(pretrained_model_name_or_path='bert-large-uncased')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'bert-large-uncased', 'bert-large-uncased-vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddle-hapi.bj.bcebos.com/models/bert/bert-large-uncased-vocab.txt"
download(url, os.path.join(DATA_HOME, 'bert-large-uncased'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install bert_cased_L-12_H-768_A-12==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_cased_L-12_H-768_A-12 pretrained model
module = hub.Module(name="bert_cased_L-12_H-768_A-12")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_cased_L-12_H-768_A-12's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_cased_L_12_H_768_A_12.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_cased_L_12_H_768_A_12.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_cased_L-12_H-768_A-12",
version="1.1.0",
summary="bert_cased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install bert_cased_L-24_H-1024_A-16==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_cased_L-24_H-1024_A-16 pretrained model
module = hub.Module(name="bert_cased_L-24_H-1024_A-16")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_cased_L-24_H-1024_A-16's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_cased_L_24_H_1024_A_16.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_cased_L_24_H_1024_A_16.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_cased_L-24_H-1024_A-16",
version="1.1.0",
summary="bert_cased_L-24_H-1024_A-16, 24-layer, 1024-hidden, 16-heads, 340M parameters ",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install bert_chinese_L-12_H-768_A-12==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_chinese_L-12_H-768_A-12 pretrained model
module = hub.Module(name="bert_chinese_L-12_H-768_A-12")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_chinese_L-12_H-768_A-12's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_chinese_L_12_H_768_A_12.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_chinese_L_12_H_768_A_12.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_chinese_L-12_H-768_A-12",
version="1.1.0",
summary="bert_chinese_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters ",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class BertChinese(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = BertChinese()
```shell
$ hub install bert_multi_cased_L-12_H-768_A-12==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_multi_cased_L-12_H-768_A-12 pretrained model
module = hub.Module(name="bert_multi_cased_L-12_H-768_A-12")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_multi_cased_L-12_H-768_A-12's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_multi_cased_L_12_H_768_A_12.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_multi_cased_L_12_H_768_A_12.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_multi_cased_L-12_H-768_A-12",
version="1.1.0",
summary="bert_multi_cased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters ",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install bert_multi_uncased_L-12_H-768_A-12==1.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_multi_uncased_L-12_H-768_A-12 pretrained model
module = hub.Module(name="bert_multi_uncased_L-12_H-768_A-12")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_multi_uncased_L-12_H-768_A-12's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_multi_uncased_L_12_H_768_A_12.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_multi_uncased_L_12_H_768_A_12.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_multi_uncased_L-12_H-768_A-12",
version="1.0.0",
summary="bert_multi_uncased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters ",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install bert_uncased_L_12_H_768_A_12==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_uncased_L_12_H_768_A_12 pretrained model
module = hub.Module(name="bert_uncased_L_12_H_768_A_12")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_uncased_L_12_H_768_A_12's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_uncased_L_12_H_768_A_12.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_uncased_L_12_H_768_A_12.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_uncased_L-12_H-768_A-12",
version="1.1.0",
summary="bert_uncased_L-12_H-768_A-12, 12-layer, 768-hidden, 12-heads, 110M parameters",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install bert_uncased_L-24_H-1024_A-16==1.1.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[BERT论文](https://arxiv.org/abs/1810.04805)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install bert_uncased_L-24_H-1024_A-16 pretrained model
module = hub.Module(name="bert_uncased_L-24_H-1024_A-16")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of bert_uncased_L-24_H-1024_A-16's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
* 1.1.0
支持get_embedding与get_params_layer
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from bert_uncased_L_24_H_1024_A_16.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from bert_uncased_L_24_H_1024_A_16.model.bert import BertConfig, BertModel
@moduleinfo(
name="bert_uncased_L-24_H-1024_A-16",
version="1.1.0",
summary="bert_uncased_L-24_H-1024_A-16, 24-layer, 1024-hidden, 16-heads, 340M parameters ",
author="paddlepaddle",
author_email="paddle-dev@baidu.com",
type="nlp/semantic_model",
)
class Bert(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = Bert()
```shell
$ hub install chinese-roberta-wwm-ext==1.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[RoBERTa论文](https://arxiv.org/abs/1907.11692)[Chinese-BERT-wwm技术报告](https://arxiv.org/abs/1906.08101)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install chinese-roberta-wwm-ext pretrained model
module = hub.Module(name="chinese-roberta-wwm-ext")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of chinese-roberta-wwm-ext's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/ymcui/Chinese-BERT-wwm
## 贡献者
[ymcui](https://github.com/ymcui)
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from chinese_roberta_wwm_ext.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from chinese_roberta_wwm_ext.model.bert import BertConfig, BertModel
@moduleinfo(
name="chinese-roberta-wwm-ext",
version="1.0.0",
summary="chinese-roberta-wwm-ext, 12-layer, 768-hidden, 12-heads, 110M parameters ",
author="ymcui",
author_email="ymcui@ir.hit.edu.cn",
type="nlp/semantic_model",
)
class BertWwm(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = BertWwm()
```shell
$ hub install chinese-roberta-wwm-ext-large==1.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[RoBERTa论文](https://arxiv.org/abs/1907.11692)[Chinese-BERT-wwm技术报告](https://arxiv.org/abs/1906.08101)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**参数**
> 无
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
**代码示例**
```python
import paddlehub as hub
# Load $ hub install chinese-roberta-wwm-ext-large pretrained model
module = hub.Module(name="chinese-roberta-wwm-ext-large")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
# Must feed all the tensor of chinese-roberta-wwm-ext-large's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
## 查看代码
https://github.com/ymcui/Chinese-BERT-wwm
## 贡献者
[ymcui](https://github.com/ymcui)
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
## 更新历史
* 1.0.0
初始发布
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import json
import paddle.fluid as fluid
from chinese_roberta_wwm_ext_large.model.transformer_encoder import encoder, pre_process_layer
class BertConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path) as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing bert model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict[key]
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
class BertModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from chinese_roberta_wwm_ext_large.model.bert import BertConfig, BertModel
@moduleinfo(
name="chinese-roberta-wwm-ext-large",
version="1.0.0",
summary="chinese-roberta-wwm-ext-large, 24-layer, 1024-hidden, 16-heads, 340M parameters ",
author="ymcui",
author_email="ymcui@ir.hit.edu.cn",
type="nlp/semantic_model",
)
class BertWwm(TransformerModule):
def _initialize(self):
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
bert_config_path = os.path.join(self.directory, "assets", "bert_config.json")
self.bert_config = BertConfig(bert_config_path)
def net(self, input_ids, position_ids, segment_ids, input_mask):
"""
create neural network.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
"""
bert = BertModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.bert_config,
use_fp16=False)
pooled_output = bert.get_pooled_output()
sequence_output = bert.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = BertWwm()
```shell
$ hub install ernie==1.2.0
$ hub install ernie==2.0.0
```
## 在线体验
<a class="ant-btn large" href="https://aistudio.baidu.com/aistudio/projectDetail/79380" target="_blank">AI Studio 快速体验</a>
......@@ -19,111 +19,131 @@ $ hub install ernie==1.2.0
更多详情请参考[ERNIE论文](https://arxiv.org/abs/1904.09223)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:BERT模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**存放输入文本tokenize后各token对应BERT词汇表的word ids, shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**存放输入文本tokenize后各token所在该文本的位置,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**存放各token所在文本的标识(token属于文本1或者文本2),shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
)
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
```python
def get_params_layer()
def get_embedding(
texts,
use_gpu=False
)
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
> 无
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> params_layer:dict类型,key为参数名,值为参数所在层数
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
# Load $ hub install ernie pretrained model
module = hub.Module(name="ernie")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
# Must feed all the tensor of ernie's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
## 服务部署
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
PaddleHub Serving可以部署一个在线获取预训练词向量。
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
### Step1: 启动PaddleHub Serving
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
运行启动命令:
```shell
$ hub serving start -m ernie
```
利用该PaddleHub Module Fine-tune示例,可参考[文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/text-classification)[序列标注](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/sequence-labeling)
`Note`:建议该PaddleHub Module在**GPU**环境中运行。如出现显存不足,可以将**batch_size****max_seq_len**调小。
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/ernie"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/ERNIE
## 依赖
paddlepaddle >= 1.6.2
paddlepaddle >= 2.0.0
paddlehub >= 1.6.0
paddlehub >= 2.0.0
## 更新历史
......@@ -146,3 +166,7 @@ paddlehub >= 1.6.0
* 1.2.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图版本,接口有所变化
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import json
import six
import paddle.fluid as fluid
from io import open
from paddlehub.common.logger import logger
from ernie.model.transformer_encoder import encoder, pre_process_layer
class ErnieConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing Ernie model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict.get(key, None)
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
logger.info('%s: %s' % (arg, value))
logger.info('------------------------------------------------')
class ErnieModel(object):
def __init__(self, src_ids, position_ids, sentence_ids, input_mask, config, weight_sharing=True, use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
self._sent_types = config['type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._dtype = "float16" if use_fp16 else "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_pretraining_output(self, mask_label, mask_pos, labels):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
next_sent_fc_out = fluid.layers.fc(input=next_sent_feat,
size=2,
param_attr=fluid.ParamAttr(name="next_sent_fc.w_0",
initializer=self._param_initializer),
bias_attr="next_sent_fc.b_0")
next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(logits=next_sent_fc_out,
label=labels,
return_softmax=True)
next_sent_acc = fluid.layers.accuracy(input=next_sent_softmax, label=labels)
mean_next_sent_loss = fluid.layers.mean(next_sent_loss)
loss = mean_next_sent_loss + mean_mask_lm_loss
return next_sent_acc, mean_mask_lm_loss, loss
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -12,65 +11,210 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Dict, List, Optional, Union, Tuple
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ernie.model.ernie import ErnieModel, ErnieConfig
from paddlehub import BertTokenizer
from paddlehub.module.modeling_ernie import ErnieModel, ErnieForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="ernie",
version="1.2.0",
summary="Baidu's ERNIE, Enhanced Representation through kNowledge IntEgration, max_seq_len=512 when predtrained",
author="baidu-nlp",
version="2.0.0",
summary=
"Baidu's ERNIE, Enhanced Representation through kNowledge IntEgration, max_seq_len=512 when predtrained. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model",
)
class Ernie(TransformerModule):
def _initialize(self):
ernie_config_path = os.path.join(self.directory, "assets", "ernie_config.json")
self.ernie_config = ErnieConfig(ernie_config_path)
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")\
def net(self, input_ids, position_ids, segment_ids, input_mask):
type="nlp/semantic_model")
class Ernie(nn.Layer):
"""
Ernie model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Ernie, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = ErnieForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ernie')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'ernie', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie/vocab.txt"
download(url, os.path.join(DATA_HOME, 'ernie'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
create neural network.
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
results(obj:`list`): All the predictions labels.
"""
self.ernie_config._config_dict['use_task_id'] = False
ernie = ErnieModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
input_mask=input_mask,
config=self.ernie_config,
use_fp16=False)
pooled_output = ernie.get_pooled_output()
sequence_output = ernie.get_sequence_output()
return pooled_output, sequence_output
def param_prefix(self):
return "@HUB_ernie-stable@"
if __name__ == '__main__':
test_module = Ernie()
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install ernie_tiny==1.1.0
$ hub install ernie_tiny==2.0.0
```
## 在线体验
<a class="ant-btn large" href="https://aistudio.baidu.com/aistudio/projectDetail/79380" target="_blank">AI Studio 快速体验</a>
<p align="center">
<img src="https://paddlehub.bj.bcebos.com/paddlehub-img%2Fernie_tiny_framework.PNG" hspace='10'/> <br />
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/ernie_network_1.png" hspace='10'/> <br />
</p>
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/ernie_network_2.png" hspace='10'/> <br />
</p>
更多详情请参考[ERNIE论文](https://arxiv.org/abs/1904.09223)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
创建Module对象(动态图组网版本)。
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:ERNIE模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**字段存放Token Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**字段存放Position Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**字段存放Sentence Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**字段存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
use_gpu=False
)
```
......@@ -46,70 +63,86 @@ def get_embedding(
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**代码示例**
**参数**
```python
import paddlehub as hub
> 无
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie_tiny',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
**返回**
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
> params_layer:dict类型,key为参数名,值为参数所在层数
## 服务部署
**代码示例**
PaddleHub Serving可以部署一个在线获取预训练词向量。
```python
import paddlehub as hub
### Step1: 启动PaddleHub Serving
# Load ernie pretrained model
module = hub.Module(name="ernie_tiny")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
运行启动命令:
# Must feed all the tensor of ernie's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
```shell
$ hub serving start -m ernie_tiny
```
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
### Step2: 发送预测请求
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
利用该PaddleHub Module Fine-tune示例,可参考[文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/text_classification)
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
**Note**:建议该PaddleHub Module在**GPU**环境中运行。如出现显存不足,可以将**batch_size****max_seq_len**调小。
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/ernie_tiny"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/ERNIE
## 依赖
paddlepaddle >= 1.6.2
paddlepaddle >= 2.0.0
paddlehub >= 1.6.0
paddlehub >= 2.0.0
## 更新历史
......@@ -124,3 +157,7 @@ paddlehub >= 1.6.0
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图版本,接口有所变化
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import json
import six
import paddle.fluid as fluid
from io import open
from paddlehub.common.logger import logger
from ernie_tiny.model.transformer_encoder import encoder, pre_process_layer
class ErnieConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing Ernie model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict.get(key, None)
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
logger.info('%s: %s' % (arg, value))
logger.info('------------------------------------------------')
class ErnieModel(object):
def __init__(self,
src_ids,
position_ids,
sentence_ids,
task_ids,
input_mask,
config,
weight_sharing=True,
use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if config['sent_type_vocab_size']: # line 47: return self._config_dict.get(key, None)
self._sent_types = config['sent_type_vocab_size']
else:
self._sent_types = config['type_vocab_size']
self._use_task_id = config['use_task_id']
if self._use_task_id:
self._task_types = config['task_type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._task_emb_name = "task_embedding"
self._dtype = "float16" if use_fp16 else "float32"
self._emb_dtype = "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, task_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, task_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
if self._use_task_id:
task_emb_out = fluid.layers.embedding(task_ids,
size=[self._task_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._task_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + task_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
if self._dtype == "float16":
self._enc_out = fluid.layers.cast(x=self._enc_out, dtype=self._emb_dtype)
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_lm_output(self, mask_label, mask_pos):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
self.next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = fluid.layers.layer_norm(mask_trans_feat,
begin_norm_axis=len(mask_trans_feat.shape) - 1,
param_attr=fluid.ParamAttr(
name='mask_lm_trans_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_layer_norm_bias',
initializer=fluid.initializer.Constant(1.)))
# transform: layer norm
#mask_trans_feat = pre_process_layer(
# mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._emb_dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
return mean_mask_lm_loss
def get_task_output(self, task, task_labels):
task_fc_out = fluid.layers.fc(input=self.next_sent_feat,
size=task["num_labels"],
param_attr=fluid.ParamAttr(name=task["task_name"] + "_fc.w_0",
initializer=self._param_initializer),
bias_attr=task["task_name"] + "_fc.b_0")
task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy(logits=task_fc_out,
label=task_labels,
return_softmax=True)
task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels)
mean_task_loss = fluid.layers.mean(task_loss)
return mean_task_loss, task_acc
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -12,68 +11,219 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Dict, List, Optional, Union, Tuple
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ernie_tiny.model.ernie import ErnieModel, ErnieConfig
from paddlehub import ErnieTinyTokenizer
from paddlehub.module.modeling_ernie import ErnieModel, ErnieForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="ernie_tiny",
version="1.1.0",
version="2.0.0",
summary="Baidu's ERNIE-tiny, Enhanced Representation through kNowledge IntEgration, tiny version, max_seq_len=512",
author="baidu-nlp",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model",
)
class ErnieTiny(TransformerModule):
def _initialize(self):
ernie_config_path = os.path.join(self.directory, "assets", "ernie_tiny_config.json")
self.ernie_config = ErnieConfig(ernie_config_path)
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")
self.spm_path = os.path.join(self.directory, "assets", "spm_cased_simp_sampled.model")
self.word_dict_path = os.path.join(self.directory, "assets", "dict.wordseg.pickle")
def net(self, input_ids, position_ids, segment_ids, input_mask):
type="nlp/semantic_model")
class ErnieTiny(nn.Layer):
"""
Ernie model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(ErnieTiny, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = ErnieForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ernie_tiny')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie_tiny')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'ernie_tiny', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/vocab.txt"
download(url, os.path.join(DATA_HOME, 'ernie_tiny'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
spm_path = os.path.join(DATA_HOME, 'ernie_tiny', 'spm_cased_simp_sampled.model')
if not os.path.exists(spm_path) or not os.path.isfile(spm_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/spm_cased_simp_sampled.model"
download(url, os.path.join(DATA_HOME, 'ernie_tiny'))
word_dict_path = os.path.join(DATA_HOME, 'ernie_tiny', 'dict.wordseg.pickle')
if not os.path.exists(word_dict_path) or not os.path.isfile(word_dict_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/dict.wordseg.pickle"
download(url, os.path.join(DATA_HOME, 'ernie_tiny'))
return ErnieTinyTokenizer(self.get_vocab_path(), spm_path, word_dict_path)
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
create neural network.
Predicts the data labels.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
results(obj:`list`): All the predictions labels.
"""
self.ernie_config._config_dict['use_task_id'] = False
ernie = ErnieModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
task_ids=None,
input_mask=input_mask,
config=self.ernie_config,
use_fp16=False)
pooled_output = ernie.get_pooled_output()
sequence_output = ernie.get_sequence_output()
return pooled_output, sequence_output
def param_prefix(self):
return "@HUB_ernie-tiny@"
if __name__ == '__main__':
test_module = ErnieTiny()
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install ernie_v2_eng_base==1.1.0
$ hub install ernie_v2_eng_base==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/ernie2.0_arch.png" hspace='10'/> <br />
</p>
......@@ -12,39 +14,44 @@ $ hub install ernie_v2_eng_base==1.1.0
更多详情请参考[ERNIE论文](https://arxiv.org/abs/1907.12412)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
创建Module对象(动态图组网版本)。
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:ERNIE模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**字段存放Token Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**字段存放Position Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**字段存放Sentence Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**字段存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为 \[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
use_gpu=False
)
```
......@@ -52,70 +59,86 @@ def get_embedding(
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**代码示例**
**参数**
```python
import paddlehub as hub
> 无
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie_v2_eng_base',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
**返回**
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
> params_layer:dict类型,key为参数名,值为参数所在层数
## 服务部署
**代码示例**
PaddleHub Serving可以部署一个在线获取预训练词向量。
```python
import paddlehub as hub
### Step1: 启动PaddleHub Serving
# Load ernie pretrained model
module = hub.Module(name="ernie_v2_eng_base")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
运行启动命令:
# Must feed all the tensor of ernie's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
```shell
$ hub serving start -m ernie_v2_eng_base
```
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
### Step2: 发送预测请求
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
利用该PaddleHub Module Fine-tune示例,可参考[文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.4.0/demo/text-classification)
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
**Note**:建议该PaddleHub Module在**GPU**环境中运行。如出现显存不足,可以将**batch_size****max_seq_len**调小。
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/ernie_v2_eng_base"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/ERNIE
## 依赖
paddlepaddle >= 1.6.2
paddlepaddle >= 2.0.0
paddlehub >= 1.6.0
paddlehub >= 2.0.0
## 更新历史
......@@ -130,3 +153,7 @@ paddlehub >= 1.6.0
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图版本,接口有所变化
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import json
import six
import paddle.fluid as fluid
from io import open
from paddlehub.common.logger import logger
from ernie_v2_eng_base.model.transformer_encoder import encoder, pre_process_layer
class ErnieConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing Ernie model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict.get(key, None)
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
logger.info('%s: %s' % (arg, value))
logger.info('------------------------------------------------')
class ErnieModel(object):
def __init__(self,
src_ids,
position_ids,
sentence_ids,
task_ids,
input_mask,
config,
weight_sharing=True,
use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if config['sent_type_vocab_size']:
self._sent_types = config['sent_type_vocab_size']
else:
self._sent_types = config['type_vocab_size']
self._use_task_id = config['use_task_id']
if self._use_task_id:
self._task_types = config['task_type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._task_emb_name = "task_embedding"
self._dtype = "float16" if use_fp16 else "float32"
self._emb_dtype = "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, task_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, task_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
if self._use_task_id:
task_emb_out = fluid.layers.embedding(task_ids,
size=[self._task_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._task_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + task_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
if self._dtype == "float16":
next_sent_feat = fluid.layers.cast(x=next_sent_feat, dtype=self._emb_dtype)
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_lm_output(self, mask_label, mask_pos):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
self.next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
if self._dtype == "float16":
mask_feat = fluid.layers.cast(x=mask_feat, dtype=self._emb_dtype)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = fluid.layers.layer_norm(mask_trans_feat,
begin_norm_axis=len(mask_trans_feat.shape) - 1,
param_attr=fluid.ParamAttr(
name='mask_lm_trans_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_layer_norm_bias',
initializer=fluid.initializer.Constant(1.)))
# transform: layer norm
#mask_trans_feat = pre_process_layer(
# mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._emb_dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
return mean_mask_lm_loss
def get_task_output(self, task, task_labels):
task_fc_out = fluid.layers.fc(input=self.next_sent_feat,
size=task["num_labels"],
param_attr=fluid.ParamAttr(name=task["task_name"] + "_fc.w_0",
initializer=self._param_initializer),
bias_attr=task["task_name"] + "_fc.b_0")
task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy(logits=task_fc_out,
label=task_labels,
return_softmax=True)
task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels)
mean_task_loss = fluid.layers.mean(task_loss)
return mean_task_loss, task_acc
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -12,64 +11,211 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Dict, List, Optional, Union, Tuple
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ernie_v2_eng_base.model.ernie import ErnieModel, ErnieConfig
from paddlehub import BertTokenizer
from paddlehub.module.modeling_ernie import ErnieModel, ErnieForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="ernie_v2_eng_base",
version="1.1.0",
version="2.0.0",
summary=
"Baidu's ERNIE 2.0, Enhanced Representation through kNowledge IntEgration, A Continual Pre-training Framework for Language Understanding. 12-layer, 768-hidden, 12-heads, 110M parameters.",
author="baidu-nlp",
"Baidu's ERNIE 2.0, Enhanced Representation through kNowledge IntEgration, max_seq_len=512 when predtrained. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model",
)
class ErnieV2EngBase(TransformerModule):
def _initialize(self):
ernie_config_path = os.path.join(self.directory, "assets", "ernie_config.json")
self.ernie_config = ErnieConfig(ernie_config_path)
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")\
def net(self, input_ids, position_ids, segment_ids, input_mask):
type="nlp/semantic_model")
class ErnieV2(nn.Layer):
"""
Ernie model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(ErnieV2, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = ErnieForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='ernie_v2_eng_base')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie_v2_eng_base')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'ernie', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_eng_base/vocab.txt"
download(url, os.path.join(DATA_HOME, 'ernie'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
create neural network.
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
results(obj:`list`): All the predictions labels.
"""
self.ernie_config._config_dict['use_task_id'] = False
ernie = ErnieModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
task_ids=None,
input_mask=input_mask,
config=self.ernie_config,
use_fp16=False)
pooled_output = ernie.get_pooled_output()
sequence_output = ernie.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = ErnieV2EngBase()
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install ernie_v2_eng_large==1.1.0
$ hub install ernie_v2_eng_large==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/ernie2.0_arch.png" hspace='10'/> <br />
</p>
......@@ -12,40 +14,44 @@ $ hub install ernie_v2_eng_large==1.1.0
更多详情请参考[ERNIE论文](https://arxiv.org/abs/1907.12412)
## API
```python
def context(
trainable=True,
max_seq_len=128
)
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
用于获取Module的上下文信息,得到输入、输出以及预训练的Paddle Program副本
创建Module对象(动态图组网版本)。
**参数**
> trainable:设置为True时,Module中的参数在Fine-tune时也会随之训练,否则保持不变。
> max_seq_len:ERNIE模型的最大序列长度,若序列长度不足,会通过padding方式补到**max_seq_len**, 若序列长度大于该值,则会以截断方式让序列长度为**max_seq_len**,max_seq_len可取值范围为0~512;
**返回**
> inputs:dict类型,有以下字段:
> >**input_ids**对应于上图的Token Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**position_ids**对应于上图的Position Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**segment_ids**对应于上图的Sentence Embedding,shape为\[batch_size, max_seq_len\],int64类型;
> >**input_mask**存放token是否为padding的标识,shape为\[batch_size, max_seq_len\],int64类型;
> >**task_id**对应于上图的Task Embedding的标识,shape为\[batch_size, max_seq_len\],int64类型;
>
> outputs:dict类型,Module的输出特征,有以下字段:
> >**pooled_output**字段存放句子粒度的特征,可用于文本分类等任务,shape为 \[batch_size, 768\],int64类型;
> >**sequence_output**字段存放字粒度的特征,可用于序列标注等任务,shape为\[batch_size, seq_len, 768\],int64类型;
>
> program:包含该Module计算图的Program。
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False,
batch_size=1
use_gpu=False
)
```
......@@ -53,73 +59,86 @@ def get_embedding(
**参数**
> texts:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
> use_gpu:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
> results:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
>
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
```python
def get_params_layer()
```
用于获取参数层信息,该方法与ULMFiTStrategy联用可以严格按照层数设置分层学习率与逐层解冻。
**代码示例**
**参数**
```python
import paddlehub as hub
> 无
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='ernie_v2_eng_large',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
**返回**
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
> params_layer:dict类型,key为参数名,值为参数所在层数
## 服务部署
**代码示例**
PaddleHub Serving可以部署一个在线获取预训练词向量。
```python
import paddlehub as hub
### Step1: 启动PaddleHub Serving
# Load ernie pretrained model
module = hub.Module(name="ernie_v2_eng_large")
inputs, outputs, program = module.context(trainable=True, max_seq_len=128)
运行启动命令:
# Must feed all the following tensor of ernie's module need
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
# task_ids is not necessary during finetuning
task_ids = inputs["task_ids"]
```shell
$ hub serving start -m ernie_v2_eng_large
```
# Use "pooled_output" for sentence-level output.
pooled_output = outputs["pooled_output"]
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
# Use "sequence_output" for token-level output.
sequence_output = outputs["sequence_output"]
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
# Use "get_embedding" to get embedding result.
embedding_result = module.get_embedding(texts=[["Sample1_text_a"],["Sample2_text_a","Sample2_text_b"]], use_gpu=True)
### Step2: 发送预测请求
# Use "get_params_layer" to get params layer and used to ULMFiTStrategy.
params_layer = module.get_params_layer()
strategy = hub.finetune.strategy.ULMFiTStrategy(frz_params_layer=params_layer, dis_params_layer=params_layer)
```
利用该PaddleHub Module Fine-tune示例,可参考[文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.2/demo/text-classification)
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
`Note`:建议该PaddleHub Module在**GPU**环境中运行。如出现显存不足,可以将**batch_size****max_seq_len**调小。
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/ernie_v2_eng_large"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/ERNIE
## 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
......@@ -134,3 +153,7 @@ paddlehub >= 1.6.0
* 1.1.0
支持get_embedding与get_params_layer
* 2.0.0
全面升级动态图版本,接口有所变化
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import json
import six
import paddle.fluid as fluid
from io import open
from paddlehub.common.logger import logger
from ernie_v2_eng_large.model.transformer_encoder import encoder, pre_process_layer
class ErnieConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing Ernie model config file '%s'" % config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict.get(key, None)
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
logger.info('%s: %s' % (arg, value))
logger.info('------------------------------------------------')
class ErnieModel(object):
def __init__(self,
src_ids,
position_ids,
sentence_ids,
task_ids,
input_mask,
config,
weight_sharing=True,
use_fp16=False):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if config['sent_type_vocab_size']:
self._sent_types = config['sent_type_vocab_size']
else:
self._sent_types = config['type_vocab_size']
self._use_task_id = config['use_task_id']
if self._use_task_id:
self._task_types = config['task_type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._task_emb_name = "task_embedding"
self._dtype = "float16" if use_fp16 else "float32"
self._emb_dtype = "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(scale=config['initializer_range'])
self._build_model(src_ids, position_ids, sentence_ids, task_ids, input_mask)
def _build_model(self, src_ids, position_ids, sentence_ids, task_ids, input_mask):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._word_emb_name,
initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._pos_emb_name,
initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._sent_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
if self._use_task_id:
task_emb_out = fluid.layers.embedding(task_ids,
size=[self._task_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(name=self._task_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + task_emb_out
emb_out = pre_process_layer(emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')
if self._dtype == "float16":
emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)
self_attn_mask = fluid.layers.matmul(x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
self._enc_out = encoder(enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name='encoder')
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
if self._dtype == "float16":
next_sent_feat = fluid.layers.cast(x=next_sent_feat, dtype=self._emb_dtype)
next_sent_feat = fluid.layers.fc(input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(name="pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr="pooled_fc.b_0")
return next_sent_feat
def get_lm_output(self, mask_label, mask_pos):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
self.next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
if self._dtype == "float16":
mask_feat = fluid.layers.cast(x=mask_feat, dtype=self._emb_dtype)
# transform: fc
mask_trans_feat = fluid.layers.fc(input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(name='mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = fluid.layers.layer_norm(mask_trans_feat,
begin_norm_axis=len(mask_trans_feat.shape) - 1,
param_attr=fluid.ParamAttr(
name='mask_lm_trans_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name='mask_lm_trans_layer_norm_bias',
initializer=fluid.initializer.Constant(1.)))
# transform: layer norm
#mask_trans_feat = pre_process_layer(
# mask_trans_feat, 'n', name='mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(name="mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(shape=[self._voc_size],
dtype=self._emb_dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(name="mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(logits=fc_out, label=mask_label)
mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
return mean_mask_lm_loss
def get_task_output(self, task, task_labels):
task_fc_out = fluid.layers.fc(input=self.next_sent_feat,
size=task["num_labels"],
param_attr=fluid.ParamAttr(name=task["task_name"] + "_fc.w_0",
initializer=self._param_initializer),
bias_attr=task["task_name"] + "_fc.b_0")
task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy(logits=task_fc_out,
label=task_labels,
return_softmax=True)
task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels)
mean_task_loss = fluid.layers.mean(task_loss)
return mean_task_loss, task_acc
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError("Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_query_fc.w_0', initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_key_fc.w_0', initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_value_fc.w_0', initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat([layers.reshape(cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat([layers.reshape(cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_output_fc.w_0', initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(name=name + '_fc_0.w_0', initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(pre_process_layer(enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(pre_process_layer(attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -12,64 +11,211 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Dict, List, Optional, Union, Tuple
import os
from paddlehub import TransformerModule
from paddlehub.module.module import moduleinfo
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ernie_v2_eng_large.model.ernie import ErnieModel, ErnieConfig
from paddlehub import BertTokenizer
from paddlehub.module.modeling_ernie import ErnieModel, ErnieForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="ernie_v2_eng_large",
version="1.1.0",
version="2.0.0",
summary=
"Baidu's ERNIE 2.0, Enhanced Representation through kNowledge IntEgration, A Continual Pre-training Framework for Language Understanding. 12-layer, 768-hidden, 12-heads, 110M parameters.",
author="baidu-nlp",
"Baidu's ERNIE 2.0, Enhanced Representation through kNowledge IntEgration, max_seq_len=512 when predtrained. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model",
)
class ErnieV2EngLarge(TransformerModule):
def _initialize(self):
ernie_config_path = os.path.join(self.directory, "assets", "ernie_config.json")
self.ernie_config = ErnieConfig(ernie_config_path)
self.MAX_SEQ_LEN = 512
self.params_path = os.path.join(self.directory, "assets", "params")
self.vocab_path = os.path.join(self.directory, "assets", "vocab.txt")\
def net(self, input_ids, position_ids, segment_ids, input_mask):
type="nlp/semantic_model")
class ErnieV2(nn.Layer):
"""
Ernie model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(ErnieV2, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = ErnieForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='ernie_v2_eng_large')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = ErnieModel.from_pretrained(pretrained_model_name_or_path='ernie_v2_eng_large')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'ernie', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_eng_large/vocab.txt"
download(url, os.path.join(DATA_HOME, 'ernie'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
create neural network.
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
input_ids (tensor): the word ids.
position_ids (tensor): the position ids.
segment_ids (tensor): the segment ids.
input_mask (tensor): the padding mask.
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
pooled_output (tensor): sentence-level output for classification task.
sequence_output (tensor): token-level output for sequence task.
results(obj:`list`): All the predictions labels.
"""
self.ernie_config._config_dict['use_task_id'] = False
ernie = ErnieModel(src_ids=input_ids,
position_ids=position_ids,
sentence_ids=segment_ids,
task_ids=None,
input_mask=input_mask,
config=self.ernie_config,
use_fp16=False)
pooled_output = ernie.get_pooled_output()
sequence_output = ernie.get_sequence_output()
return pooled_output, sequence_output
if __name__ == '__main__':
test_module = ErnieV2EngLarge()
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install roberta-wwm-ext-large==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[RoBERTa论文](https://arxiv.org/abs/1907.11692)[Chinese-BERT-wwm技术报告](https://arxiv.org/abs/1906.08101)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='roberta-wwm-ext-large',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m roberta-wwm-ext-large
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/roberta-wwm-ext-large"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_roberta import RobertaModel, RobertaForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="roberta-wwm-ext-large",
version="2.0.0",
summary=
"chinese-roberta-wwm-ext-large, 24-layer, 1024-hidden, 16-heads, 340M parameters. The module is executed as paddle.dygraph.",
author="ymcui",
author_email="ymcui@ir.hit.edu.cn",
type="nlp/semantic_model",
)
class Roberta(nn.Layer):
"""
RoBERTa model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Roberta, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = RobertaForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='roberta-wwm-ext-large')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = RobertaModel.from_pretrained(pretrained_model_name_or_path='roberta-wwm-ext-large')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'roberta-wwm-ext-large', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_large/vocab.txt"
download(url, os.path.join(DATA_HOME, 'roberta-wwm-ext-large'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(str)`): The processed data whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
```shell
$ hub install roberta-wwm-ext==2.0.0
```
<p align="center">
<img src="https://bj.bcebos.com/paddlehub/paddlehub-img/bert_network.png" hspace='10'/> <br />
</p>
更多详情请参考[RoBERTa论文](https://arxiv.org/abs/1907.11692)[Chinese-BERT-wwm技术报告](https://arxiv.org/abs/1906.08101)
## API
```python
def __init__(
task=None,
load_checkpoint=None,
label_map=None)
```
创建Module对象(动态图组网版本)。
**参数**
* `task`: 任务名称,可为`sequence_classification`
* `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。
* `label_map`:预测时的类别映射表。
```python
def predict(
data,
max_seq_len=128,
batch_size=1,
use_gpu=False)
```
**参数**
* `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,
每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。
* `max_seq_len`:模型处理文本的最大长度
* `batch_size`:模型批处理大小
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
```python
def get_embedding(
texts,
use_gpu=False
)
```
用于获取输入文本的句子粒度特征与字粒度特征
**参数**
* `texts`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。
* `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。
**返回**
* `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。
**代码示例**
```python
import paddlehub as hub
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
label_map = {0: 'negative', 1: 'positive'}
model = hub.Module(
name='roberta-wwm-ext',
version='2.0.0',
task='sequence_classification',
load_checkpoint='/path/to/parameters',
label_map=label_map)
results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False)
for idx, text in enumerate(data):
print('Data: {} \t Lable: {}'.format(text, results[idx]))
```
参考PaddleHub 文本分类示例。https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classifcation
## 服务部署
PaddleHub Serving可以部署一个在线获取预训练词向量。
### Step1: 启动PaddleHub Serving
运行启动命令:
```shell
$ hub serving start -m roberta-wwm-ext
```
这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
### Step2: 发送预测请求
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
```python
import requests
import json
# 指定用于预测的文本并生成字典{"text": [text_1, text_2, ... ]}
text = [["今天是个好日子", "天气预报说今天要下雨"], ["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"]]
# 以key的方式指定text传入预测方法的时的参数,此例中为"texts"
# 对应本地部署,则为module.get_embedding(texts=text)
data = {"texts": text}
# 发送post请求,content-type类型应指定json方式
url = "http://10.12.121.132:8866/predict/roberta-wwm-ext"
# 指定post请求的headers为application/json方式
headers = {"Content-Type": "application/json"}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
```
## 查看代码
https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/pretrain_langauge_models/BERT
## 依赖
paddlepaddle >= 2.0.0
paddlehub >= 2.0.0
## 更新历史
* 1.0.0
初始发布
* 2.0.0
全面升级动态图,接口有所变化。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddle.dataset.common import DATA_HOME
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlehub import BertTokenizer
from paddlehub.module.modeling_roberta import RobertaModel, RobertaForSequenceClassification
from paddlehub.module.module import moduleinfo, serving
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
@moduleinfo(
name="roberta-wwm-ext",
version="2.0.0",
summary=
"chinese-roberta-wwm-ext, 12-layer, 768-hidden, 12-heads, 110M parameters. The module is executed as paddle.dygraph.",
author="ymcui",
author_email="ymcui@ir.hit.edu.cn",
type="nlp/semantic_model",
)
class Roberta(nn.Layer):
"""
RoBERTa model
"""
def __init__(
self,
task=None,
load_checkpoint=None,
label_map=None,
):
super(Roberta, self).__init__()
# TODO(zhangxuefei): add token_classification task
if task == 'sequence_classification':
self.model = RobertaForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='roberta-wwm-ext')
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy(name='acc_accumulation')
elif task is None:
self.model = RobertaModel.from_pretrained(pretrained_model_name_or_path='roberta-wwm-ext')
else:
raise RuntimeError("Unknown task %s, task should be sequence_classification" % task)
self.task = task
self.label_map = label_map
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, labels=None):
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
if self.task is not None:
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, acc
return probs
else:
sequence_output, pooled_output = result
return sequence_output, pooled_output
def get_vocab_path(self):
"""
Gets the path of the module vocabulary path.
"""
save_path = os.path.join(DATA_HOME, 'roberta-wwm-ext', 'vocab.txt')
if not os.path.exists(save_path) or not os.path.isfile(save_path):
url = "https://paddlenlp.bj.bcebos.com/models/transformers/roberta_base/vocab.txt"
download(url, os.path.join(DATA_HOME, 'roberta-wwm-ext'))
return save_path
def get_tokenizer(self, tokenize_chinese_chars=True):
"""
Gets the tokenizer that is customized for this module.
Args:
tokenize_chinese_chars (:obj: bool , defaults to :obj: True):
Whether to tokenize chinese characters or not.
Returns:
tokenizer (:obj:BertTokenizer) : The tokenizer which was customized for this module.
"""
return BertTokenizer(tokenize_chinese_chars=tokenize_chinese_chars, vocab_file=self.get_vocab_path())
def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for training, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as loss and metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'loss': avg_loss, 'metrics': {'acc': acc}}
def validation_step(self, batch: List[paddle.Tensor], batch_idx: int):
"""
One step for validation, which should be called as forward computation.
Args:
batch(:obj:List[paddle.Tensor]): The one batch data, which contains the model needed,
such as input_ids, sent_ids, pos_ids, input_mask and labels.
batch_idx(int): The index of batch.
Returns:
results(:obj: Dict) : The model outputs, such as metrics.
"""
predictions, avg_loss, acc = self(input_ids=batch[0], token_type_ids=batch[1], labels=batch[2])
return {'metrics': {'acc': acc}}
def predict(self, data, max_seq_len=128, batch_size=1, use_gpu=False):
"""
Predicts the data labels.
Args:
data (obj:`List(Union(str))`): The processed data (the one sequence or sequence pair) whose each element is the raw text.
max_seq_len (:obj:`int`, `optional`, defaults to :int:`None`):
If set to a number, will limit the total sequence returned so that it has a maximum length.
batch_size(obj:`int`, defaults to 1): The number of batch.
use_gpu(obj:`bool`, defaults to `False`): Whether to use gpu to run or not.
Returns:
results(obj:`list`): All the predictions labels.
"""
# TODO(zhangxuefei): add task token_classification task predict.
if self.task not in ['sequence_classification']:
raise RuntimeError("The predict method is for sequence_classification task, but got task %s." % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
examples = []
for text in data:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, max_seq_len=max_seq_len)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], max_seq_len=max_seq_len)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
examples.append((encoded_inputs['input_ids'], encoded_inputs['segment_ids']))
def _batchify_fn(batch):
input_ids = [entry[0] for entry in batch]
segment_ids = [entry[1] for entry in batch]
return input_ids, segment_ids
# Seperates data into some batches.
batches = []
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
batches.append(one_batch)
one_batch = []
if one_batch:
# The last batch whose size is less than the config batch_size setting.
batches.append(one_batch)
results = []
self.eval()
for batch in batches:
input_ids, segment_ids = _batchify_fn(batch)
input_ids = paddle.to_tensor(input_ids)
segment_ids = paddle.to_tensor(segment_ids)
# TODO(zhangxuefei): add task token_classification postprocess after prediction.
if self.task == 'sequence_classification':
probs = self(input_ids, segment_ids)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [self.label_map[i] for i in idx]
results.extend(labels)
return results
@serving
def get_embedding(self, texts, use_gpu=False):
if self.task is not None:
raise RuntimeError("The get_embedding method is only valid when task is None, but got task %s" % self.task)
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
tokenizer = self.get_tokenizer()
results = []
for text in texts:
if len(text) == 1:
encoded_inputs = tokenizer.encode(text[0], text_pair=None, pad_to_max_seq_len=False)
elif len(text) == 2:
encoded_inputs = tokenizer.encode(text[0], text_pair=text[1], pad_to_max_seq_len=False)
else:
raise RuntimeError(
'The input text must have one or two sequence, but got %d. Please check your inputs.' % len(text))
input_ids = paddle.to_tensor(encoded_inputs['input_ids']).unsqueeze(0)
segment_ids = paddle.to_tensor(encoded_inputs['segment_ids']).unsqueeze(0)
sequence_output, pooled_output = self(input_ids, segment_ids)
sequence_output = sequence_output.squeeze(0)
pooled_output = pooled_output.squeeze(0)
results.append((sequence_output.numpy().tolist(), pooled_output.numpy().tolist()))
return results
......@@ -21,13 +21,16 @@ __version__ = '2.0.0-beta0'
from paddlehub import env
from paddlehub.config import config
from paddlehub import datasets
from paddlehub.finetune import Trainer
from paddlehub.utils import log, parser, utils
from paddlehub.utils import download as _download
from paddlehub.utils.paddlex import download, ResourceNotFoundError
from paddlehub.server import server_check
from paddlehub.server.server_source import ServerConnectionError
from paddlehub.module import Module
from paddlehub.text.bert_tokenizer import BertTokenizer
from paddlehub.text.bert_tokenizer import BertTokenizer, ErnieTinyTokenizer
from paddlehub.text.tokenizer import CustomTokenizer
# In order to maintain the compatibility of the old version, we put the relevant
# compatible code in the paddlehub.compat package, and mapped some modules referenced
......
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
......@@ -16,3 +15,4 @@
from paddlehub.datasets.canvas import Canvas
from paddlehub.datasets.flowers import Flowers
from paddlehub.datasets.minicoco import MiniCOCO
from paddlehub.datasets.chnsenticorp import ChnSentiCorp
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import csv
import io
import os
import numpy as np
import paddle.fluid as fluid
from paddlehub.env import DATA_HOME
from paddlehub.text.bert_tokenizer import BertTokenizer
from paddlehub.text.tokenizer import CustomTokenizer
from paddlehub.utils.log import logger
from paddlehub.utils.utils import download
from paddlehub.utils.xarfile import is_xarfile, unarchive
class InputExample(object):
"""
The input data structure of Transformer modules (BERT, ERNIE and so on).
"""
def __init__(self, guid: int, text_a: str, text_b: Optional[str] = None, label: Optional[str] = None):
"""
The input data structure.
Args:
guid (:obj:`int`):
Unique id for the input data.
text_a (:obj:`str`, `optional`, defaults to :obj:`None`):
The first sequence. For single sequence tasks, only this sequence must be specified.
text_b (:obj:`str`, `optional`, defaults to :obj:`None`):
The second sequence if sentence-pair.
label (:obj:`str`, `optional`, defaults to :obj:`None`):
The label of the example.
Examples:
.. code-block:: python
from paddlehub.datasets.base_nlp_dataset import InputExample
example = InputExample(guid=0,
text_a='15.4寸笔记本的键盘确实爽,基本跟台式机差不多了',
text_b='蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错',
label='1')
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
def __str__(self):
if self.text_b is None:
return "text={}\tlabel={}".format(self.text_a, self.label)
else:
return "text_a={}\ttext_b={},label={}".format(self.text_a, self.text_b, self.label)
class BaseNLPDataset(object):
"""
The virtual base class for nlp datasets, such TextClassificationDataset, SeqLabelingDataset, and so on.
The base class must be supered and re-implemented the method _read_file.
"""
def __init__(self,
base_path: str,
tokenizer: Union[BertTokenizer, CustomTokenizer],
max_seq_len: Optional[int] = 128,
mode: Optional[str] = "train",
data_file: Optional[str] = None,
label_file: Optional[str] = None,
label_list: Optional[List[str]] = None):
"""
Ags:
base_path (:obj:`str`): The directory to the whole dataset.
tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`):
It tokenizes the text and encodes the data as model needed.
max_seq_len (:obj:`int`, `optional`, defaults to :128):
If set to a number, will limit the total sequence returned so that it has a maximum length.
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train, test or dev).
data_file(:obj:`str`, `optional`, defaults to :obj:`None`):
The data file name, which is relative to the base_path.
label_file(:obj:`str`, `optional`, defaults to :obj:`None`):
The label file name, which is relative to the base_path.
It is all labels of the dataset, one line one label.
label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`):
The list of all labels of the dataset
"""
self.data_file = os.path.join(base_path, data_file)
self.label_list = label_list
self.mode = mode
self.tokenizer = tokenizer
self.max_seq_len = max_seq_len
if label_file:
self.label_file = os.path.join(base_path, label_file)
if not self.label_list:
self.label_list = self._load_label_data()
else:
logger.warning("As label_list has been assigned, label_file is noneffective")
if self.label_list:
self.label_map = {item: index for index, item in enumerate(self.label_list)}
def _load_label_data(self):
"""
Loads labels from label file.
"""
if os.path.exists(self.label_file):
with open(self.label_file, "r", encoding="utf8") as f:
return f.read().strip().split("\n")
else:
raise RuntimeError("The file {} is not found.".format(self.label_file))
def _download_and_uncompress_dataset(self, destination: str, url: str):
"""
Downloads dataset and uncompresses it.
Args:
destination (:obj:`str`): The dataset cached directory.
url (:obj: str): The link to be downloaded a dataset.
"""
if not os.path.exists(destination):
dataset_package = download(url=url, path=DATA_HOME)
if is_xarfile(dataset_package):
unarchive(dataset_package, DATA_HOME)
else:
logger.info("Dataset {} already cached.".format(destination))
def _read_file(self, input_file: str, is_file_with_header: bool = False):
"""
Reads the files.
Args:
input_file (:obj:str) : The file to be read.
is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
Whether or not the file is with the header introduction.
"""
raise NotImplementedError
def get_labels(self):
"""
Gets all labels.
"""
return self.label_list
class TextClassificationDataset(BaseNLPDataset, fluid.io.Dataset):
"""
The dataset class which is fit for all datatset of text classification.
"""
def __init__(self,
base_path: str,
tokenizer: Union[BertTokenizer, CustomTokenizer],
max_seq_len: int = 128,
mode: str = "train",
data_file: str = None,
label_file: str = None,
label_list: list = None,
is_file_with_header: bool = False):
"""
Ags:
base_path (:obj:`str`): The directory to the whole dataset.
tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`):
It tokenizes the text and encodes the data as model needed.
max_seq_len (:obj:`int`, `optional`, defaults to :128):
If set to a number, will limit the total sequence returned so that it has a maximum length.
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train, test or dev).
data_file(:obj:`str`, `optional`, defaults to :obj:`None`):
The data file name, which is relative to the base_path.
label_file(:obj:`str`, `optional`, defaults to :obj:`None`):
The label file name, which is relative to the base_path.
It is all labels of the dataset, one line one label.
label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`):
The list of all labels of the dataset
is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
Whether or not the file is with the header introduction.
"""
super(TextClassificationDataset, self).__init__(
base_path=base_path,
tokenizer=tokenizer,
max_seq_len=max_seq_len,
mode=mode,
data_file=data_file,
label_file=label_file,
label_list=label_list)
self.examples = self._read_file(self.data_file, is_file_with_header)
self.records = self._convert_examples_to_records(self.examples)
def _read_file(self, input_file, is_file_with_header: bool = False) -> List[InputExample]:
"""
Reads a tab separated value file.
Args:
input_file (:obj:str) : The file to be read.
is_file_with_header(:obj:bool, `optional`, default to :obj: False) :
Whether or not the file is with the header introduction.
Returns:
examples (:obj:`List[InputExample]`): All the input data.
"""
if not os.path.exists(input_file):
raise RuntimeError("The file {} is not found.".format(input_file))
else:
with io.open(input_file, "r", encoding="UTF-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=None)
examples = []
seq_id = 0
header = next(reader) if is_file_with_header else None
for line in reader:
example = InputExample(guid=seq_id, label=line[0], text_a=line[1])
seq_id += 1
examples.append(example)
return examples
def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dict]:
"""
Converts all examples to records which the model needs.
Args:
examples(obj:`List[InputExample]`): All data examples returned by _read_file.
Returns:
records(:obj:`List[dict]`): All records which the model needs.
"""
records = []
for example in examples:
record = self.tokenizer.encode(text=example.text_a, text_pair=example.text_b, max_seq_len=self.max_seq_len)
# CustomTokenizer will tokenize the text firstly and then lookup words in the vocab
# When all words are not found in the vocab, the text will be dropped.
if not record:
logger.info(
"The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a)
continue
if example.label:
record['label'] = self.label_map[example.label]
records.append(record)
return records
def __getitem__(self, idx):
record = self.records[idx]
if 'label' in record.keys():
if isinstance(self.tokenizer, BertTokenizer):
return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['label'])
elif isinstance(self.tokenizer, CustomTokenizer):
return np.array(record['text']), np.array(record['seq_len']), np.array(record['label'])
else:
if isinstance(self.tokenizer, BertTokenizer):
return np.array(record['input_ids']), np.array(record['segment_ids'])
elif isinstance(self.tokenizer, CustomTokenizer):
return np.array(record['text']), np.array(record['seq_len'])
def __len__(self):
return len(self.records)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union, Tuple
import os
from paddlehub.env import DATA_HOME
from paddlehub.utils.download import download_data
from paddlehub.datasets.base_nlp_dataset import TextClassificationDataset
from paddlehub.text.bert_tokenizer import BertTokenizer
from paddlehub.text.tokenizer import CustomTokenizer
@download_data(url="https://bj.bcebos.com/paddlehub-dataset/chnsenticorp.tar.gz")
class ChnSentiCorp(TextClassificationDataset):
"""
ChnSentiCorp is a dataset for chinese sentiment classification,
which was published by Tan Songbo at ICT of Chinese Academy of Sciences.
"""
# TODO(zhangxuefei): simplify datatset load, such as
# train_ds, dev_ds, test_ds = hub.datasets.ChnSentiCorp(tokenizer=xxx, max_seq_len=128, select='train', 'test', 'valid')
def __init__(self, tokenizer: Union[BertTokenizer, CustomTokenizer], max_seq_len: int = 128, mode: str = 'train'):
"""
Args:
tokenizer (:obj:`BertTokenizer` or `CustomTokenizer`):
It tokenizes the text and encodes the data as model needed.
max_seq_len (:obj:`int`, `optional`, defaults to :128):
The maximum length (in number of tokens) for the inputs to the selected module,
such as ernie, bert and so on.
mode (:obj:`str`, `optional`, defaults to `train`):
It identifies the dataset mode (train, test or dev).
Examples:
.. code-block:: python
import paddlehub as hub
tokenizer = hub.BertTokenizer(vocab_file='./vocab.txt')
train_dataset = hub.datasets.ChnSentiCorp(tokenizer=tokenizer, max_seq_len=120, mode='train')
dev_dataset = hub.datasets.ChnSentiCorp(tokenizer=tokenizer, max_seq_len=120, mode='dev')
test_dataset = hub.datasets.ChnSentiCorp(tokenizer=tokenizer, max_seq_len=120, mode='test')
"""
base_path = os.path.join(DATA_HOME, "chnsenticorp")
if mode == 'train':
data_file = 'train.tsv'
elif mode == 'test':
data_file = 'test.tsv'
else:
data_file = 'dev.tsv'
super(ChnSentiCorp, self).__init__(
base_path=base_path,
tokenizer=tokenizer,
max_seq_len=max_seq_len,
mode=mode,
data_file=data_file,
label_list=["0", "1"],
is_file_with_header=True)
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlehub.finetune.trainer import Trainer
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
......@@ -33,6 +32,7 @@ class Trainer(object):
Args:
model(paddle.nn.Layer) : Model to train or evaluate.
optimizer(paddle.optimizer.Optimizer) : Optimizer for loss.
use_gpu(bool) : Whether to use gpu to run.
use_vdl(bool) : Whether to use visualdl to record training data.
checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
state and model parameters from the checkpoint.
......@@ -52,9 +52,12 @@ class Trainer(object):
def __init__(self,
model: paddle.nn.Layer,
optimizer: paddle.optimizer.Optimizer,
use_gpu: bool = False,
use_vdl: bool = True,
checkpoint_dir: str = None,
compare_metrics: Callable = None):
compare_metrics: Callable = None,
**kwargs):
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
self.nranks = paddle.distributed.get_world_size()
self.local_rank = paddle.distributed.get_rank()
self.model = model
......@@ -154,7 +157,8 @@ class Trainer(object):
num_workers: int = 0,
eval_dataset: paddle.io.Dataset = None,
log_interval: int = 10,
save_interval: int = 10):
save_interval: int = 10,
collate_fn: Callable = None):
'''
Train a model with specific config.
......@@ -167,6 +171,8 @@ class Trainer(object):
execute evaluate function every `save_interval` epochs.
log_interval(int) : Log the train infomation every `log_interval` steps.
save_interval(int) : Save the checkpoint every `save_interval` epochs.
collate_fn(callable): function to generate mini-batch data by merging the sample list.
None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
'''
batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
......@@ -175,7 +181,8 @@ class Trainer(object):
batch_sampler=batch_sampler,
num_workers=num_workers,
return_list=True,
use_buffer_reader=True)
use_buffer_reader=True,
collate_fn=collate_fn)
steps_per_epoch = len(batch_sampler)
timer = Timer(steps_per_epoch * epochs)
......@@ -195,7 +202,9 @@ class Trainer(object):
# calculate metrics and loss
avg_loss += loss.numpy()[0]
for metric, value in metrics.items():
avg_metrics[metric] += value.numpy()[0]
if isinstance(value, paddle.Tensor):
value = value.numpy()
avg_metrics[metric] += value
timer.count()
......@@ -225,7 +234,7 @@ class Trainer(object):
if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
if eval_dataset:
result = self.evaluate(eval_dataset, batch_size, num_workers)
result = self.evaluate(eval_dataset, batch_size, num_workers, collate_fn=collate_fn)
eval_loss = result.get('loss', None)
eval_metrics = result.get('metrics', {})
if self.use_vdl:
......@@ -250,7 +259,11 @@ class Trainer(object):
self._save_checkpoint()
def evaluate(self, eval_dataset: paddle.io.Dataset, batch_size: int = 1, num_workers: int = 0):
def evaluate(self,
eval_dataset: paddle.io.Dataset,
batch_size: int = 1,
num_workers: int = 0,
collate_fn: Callable = None):
'''
Run evaluation and returns metrics.
......@@ -258,12 +271,18 @@ class Trainer(object):
eval_dataset(paddle.io.Dataset) : The validation dataset
batch_size(int) : Batch size of per step, default is 1.
num_workers(int) : Number of subprocess to load data, default is 0.
collate_fn(callable): function to generate mini-batch data by merging the sample list.
None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
'''
batch_sampler = paddle.io.DistributedBatchSampler(
eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
if self.local_rank == 0:
batch_sampler = paddle.io.BatchSampler(eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
loader = paddle.io.DataLoader(
eval_dataset, batch_sampler=batch_sampler, num_workers=num_workers, return_list=True)
eval_dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
return_list=True,
collate_fn=collate_fn)
self.model.eval()
avg_loss = num_samples = 0
......@@ -282,7 +301,7 @@ class Trainer(object):
avg_loss += loss.numpy()[0] * bs
for metric, value in metrics.items():
sum_metrics[metric] += value.numpy()[0] * bs
sum_metrics[metric] += value * bs
# print avg metrics and loss
print_msg = '[Evaluation result]'
......@@ -318,7 +337,7 @@ class Trainer(object):
raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
loss = result.get('loss', None)
if not loss:
if loss is None:
raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
self.model.__class__))
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
import paddle
import paddle.nn as nn
from paddlehub.module.nlp_module import PretrainedModel, register_base_model
class BertEmbeddings(nn.Layer):
"""
Include embeddings from word, position and token_type embeddings
"""
def __init__(self,
vocab_size,
hidden_size=768,
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
if position_ids is None:
# maybe need use shape op to unify static graph and dynamic graph
seq_length = input_ids.shape[1]
position_ids = paddle.arange(0, seq_length, dtype="int64")
if token_type_ids is None:
token_type_ids = paddle.zeros_like(input_ids, dtype="int64")
input_embedings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = input_embedings + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertPooler(nn.Layer):
"""
"""
def __init__(self, hidden_size):
super(BertPooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPretrainedModel(PretrainedModel):
"""
An abstract class for pretrained BERT models. It provides BERT related
`model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
`pretrained_init_configuration`, `base_model_prefix` for downloading and
loading pretrained models. See `PretrainedModel` for more details.
"""
model_config_file = "model_config.json"
pretrained_init_configuration = {
"bert-base-uncased": {
"vocab_size": 30522,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-large-uncased": {
"vocab_size": 30522,
"hidden_size": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"intermediate_size": 4096,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-base-multilingual-uncased": {
"vocab_size": 105879,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-base-cased": {
"vocab_size": 30522,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-base-chinese": {
"vocab_size": 21128,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-base-multilingual-cased": {
"vocab_size": 119547,
"hidden_size": 768,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
"bert-large-cased": {
"vocab_size": 28996,
"hidden_size": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"intermediate_size": 4096,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.02,
"pad_token_id": 0,
},
}
resource_files_names = {"model_state": "model_state.pdparams"}
pretrained_resource_files_map = {
"model_state": {
"bert-base-uncased": "https://paddlenlp.bj.bcebos.com/models/transformers/bert-base-uncased.pdparams",
"bert-large-uncased": "https://paddlenlp.bj.bcebos.com/models/transformers/bert-large-uncased.pdparams",
"bert-base-multilingual-uncased":
"http://paddlenlp.bj.bcebos.com/models/transformers/bert-base-multilingual-uncased.pdparams",
"bert-base-cased": "http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-base-cased.pdparams",
"bert-base-chinese": "http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-base-chinese.pdparams",
"bert-base-multilingual-cased":
"http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-base-multilingual-cased.pdparamss",
"bert-large-cased": "http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-large-cased.pdparams"
}
}
base_model_prefix = "bert"
def init_weights(self, layer):
""" Initialization hook """
if isinstance(layer, (nn.Linear, nn.Embedding)):
# only support dygraph, use truncated_normal and make it inplace
# and configurable later
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.initializer_range
if hasattr(self, "initializer_range") else self.bert.config["initializer_range"],
shape=layer.weight.shape))
elif isinstance(layer, nn.LayerNorm):
layer._epsilon = 1e-12
@register_base_model
class BertModel(BertPretrainedModel):
"""
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
pad_token_id=0):
super(BertModel, self).__init__()
self.pad_token_id = pad_token_id
self.initializer_range = initializer_range
self.embeddings = BertEmbeddings(vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings,
type_vocab_size)
encoder_layer = nn.TransformerEncoderLayer(
hidden_size,
num_attention_heads,
intermediate_size,
dropout=hidden_dropout_prob,
activation=hidden_act,
attn_dropout=attention_probs_dropout_prob,
act_dropout=0)
self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
self.pooler = BertPooler(hidden_size)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e9, axis=[1, 2])
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
encoder_outputs = self.encoder(embedding_output, attention_mask)
sequence_output = encoder_outputs
pooled_output = self.pooler(sequence_output)
return sequence_output, pooled_output
class BertForSequenceClassification(BertPretrainedModel):
"""
Model for sentence (pair) classification task with BERT.
Args:
bert (BertModel): An instance of BertModel.
num_classes (int, optional): The number of classes. Default 2
dropout (float, optional): The dropout probability for output of BERT.
If None, use the same value as `hidden_dropout_prob` of `BertModel`
instance `bert`. Default None
"""
def __init__(self, bert, num_classes=2, dropout=None):
super(BertForSequenceClassification, self).__init__()
self.num_classes = num_classes
self.bert = bert # allow bert to be config
self.dropout = nn.Dropout(dropout if dropout is not None else self.bert.config["hidden_dropout_prob"])
self.classifier = nn.Linear(self.bert.config["hidden_size"], num_classes)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
_, pooled_output = self.bert(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
import paddle
import paddle.nn as nn
from paddlehub.module.nlp_module import PretrainedModel, register_base_model
class ErnieEmbeddings(nn.Layer):
"""
Include embeddings from word, position and token_type embeddings
"""
def __init__(self,
vocab_size,
hidden_size=768,
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
pad_token_id=0):
super(ErnieEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=pad_token_id)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
if position_ids is None:
# maybe need use shape op to unify static graph and dynamic graph
seq_length = input_ids.shape[1]
position_ids = paddle.arange(0, seq_length, dtype="int64")
if token_type_ids is None:
token_type_ids = paddle.zeros_like(input_ids, dtype="int64")
input_embedings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = input_embedings + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ErniePooler(nn.Layer):
"""
"""
def __init__(self, hidden_size):
super(ErniePooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ErniePretrainedModel(PretrainedModel):
"""
An abstract class for pretrained ERNIE models. It provides ERNIE related
`model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
`pretrained_init_configuration`, `base_model_prefix` for downloading and
loading pretrained models. See `PretrainedModel` for more details.
"""
model_config_file = "model_config.json"
pretrained_init_configuration = {
"ernie": {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "relu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"max_position_embeddings": 513,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 18000,
"pad_token_id": 0,
},
"ernie_tiny": {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "relu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"max_position_embeddings": 600,
"num_attention_heads": 16,
"num_hidden_layers": 3,
"type_vocab_size": 2,
"vocab_size": 50006,
"pad_token_id": 0,
},
"ernie_v2_eng_base": {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 4,
"vocab_size": 30522,
"pad_token_id": 0,
},
"ernie_v2_eng_large": {
"attention_probs_dropout_prob": 0.1,
"intermediate_size": 4096,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"type_vocab_size": 4,
"vocab_size": 30522,
"pad_token_id": 0,
},
}
resource_files_names = {"model_state": "model_state.pdparams"}
pretrained_resource_files_map = {
"model_state": {
"ernie":
"https://paddlenlp.bj.bcebos.com/models/transformers/ernie/ernie_v1_chn_base.pdparams",
"ernie_tiny":
"https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/ernie_tiny.pdparams",
"ernie_v2_eng_base":
"https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_base/ernie_v2_eng_base.pdparams",
"ernie_v2_eng_large":
"https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_large/ernie_v2_eng_large.pdparams",
}
}
base_model_prefix = "ernie"
def init_weights(self, layer):
""" Initialization hook """
if isinstance(layer, (nn.Linear, nn.Embedding)):
# only support dygraph, use truncated_normal and make it inplace
# and configurable later
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.initializer_range
if hasattr(self, "initializer_range") else self.ernie.config["initializer_range"],
shape=layer.weight.shape))
@register_base_model
class ErnieModel(ErniePretrainedModel):
"""
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
pad_token_id=0):
super(ErnieModel, self).__init__()
self.pad_token_id = pad_token_id
self.initializer_range = initializer_range
self.embeddings = ErnieEmbeddings(vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings,
type_vocab_size, pad_token_id)
encoder_layer = nn.TransformerEncoderLayer(
hidden_size,
num_attention_heads,
intermediate_size,
dropout=hidden_dropout_prob,
activation=hidden_act,
attn_dropout=attention_probs_dropout_prob,
act_dropout=0)
self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
self.pooler = ErniePooler(hidden_size)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e9, axis=[1, 2])
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
encoder_outputs = self.encoder(embedding_output, attention_mask)
sequence_output = encoder_outputs
pooled_output = self.pooler(sequence_output)
return sequence_output, pooled_output
class ErnieForSequenceClassification(ErniePretrainedModel):
"""
Model for sentence (pair) classification task with ERNIE.
Args:
ernie (ErnieModel): An instance of `ErnieModel`.
num_classes (int, optional): The number of classes. Default 2
dropout (float, optional): The dropout probability for output of ERNIE.
If None, use the same value as `hidden_dropout_prob` of `ErnieModel`
instance `Ernie`. Default None
"""
def __init__(self, ernie, num_classes=2, dropout=None):
super(ErnieForSequenceClassification, self).__init__()
self.num_classes = num_classes
self.ernie = ernie # allow ernie to be config
self.dropout = nn.Dropout(dropout if dropout is not None else self.ernie.config["hidden_dropout_prob"])
self.classifier = nn.Linear(self.ernie.config["hidden_size"], num_classes)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
_, pooled_output = self.ernie(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
import paddle
import paddle.nn as nn
from paddlehub.module.nlp_module import PretrainedModel, register_base_model
class RobertaEmbeddings(nn.Layer):
"""
Include embeddings from word, position and token_type embeddings
"""
def __init__(self,
vocab_size,
hidden_size=768,
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
pad_token_id=0):
super(RobertaEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=pad_token_id)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
if position_ids is None:
# maybe need use shape op to unify static graph and dynamic graph
seq_length = input_ids.shape[1]
position_ids = paddle.arange(0, seq_length, dtype="int64")
if token_type_ids is None:
token_type_ids = paddle.zeros_like(input_ids, dtype="int64")
input_embedings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = input_embedings + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class RobertaPooler(nn.Layer):
"""
"""
def __init__(self, hidden_size):
super(RobertaPooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class RobertaPretrainedModel(PretrainedModel):
"""
An abstract class for pretrained RoBERTa models. It provides RoBERTa related
`model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
`pretrained_init_configuration`, `base_model_prefix` for downloading and
loading pretrained models. See `PretrainedModel` for more details.
"""
model_config_file = "model_config.json"
pretrained_init_configuration = {
"roberta-wwm-ext": {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 21128,
"pad_token_id": 0
},
"roberta-wwm-ext-large": {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"max_position_embeddings": 512,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"type_vocab_size": 2,
"vocab_size": 21128,
"pad_token_id": 0
}
}
resource_files_names = {"model_state": "model_state.pdparams"}
pretrained_resource_files_map = {
"model_state": {
"roberta-wwm-ext":
"https://paddlenlp.bj.bcebos.com/models/transformers/roberta_base/roberta_chn_base.pdparams",
"roberta-wwm-ext-large":
"https://paddlenlp.bj.bcebos.com/models/transformers/roberta_large/roberta_chn_large.pdparams",
}
}
base_model_prefix = "roberta"
def init_weights(self, layer):
""" Initialization hook """
if isinstance(layer, (nn.Linear, nn.Embedding)):
# only support dygraph, use truncated_normal and make it inplace
# and configurable later
layer.weight.set_value(
paddle.tensor.normal(
mean=0.0,
std=self.initializer_range
if hasattr(self, "initializer_range") else self.roberta.config["initializer_range"],
shape=layer.weight.shape))
elif isinstance(layer, nn.LayerNorm):
layer._epsilon = 1e-12
@register_base_model
class RobertaModel(RobertaPretrainedModel):
"""
"""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
pad_token_id=0):
super(RobertaModel, self).__init__()
self.pad_token_id = pad_token_id
self.initializer_range = initializer_range
self.embeddings = RobertaEmbeddings(vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings,
type_vocab_size, pad_token_id)
encoder_layer = nn.TransformerEncoderLayer(
hidden_size,
num_attention_heads,
intermediate_size,
dropout=hidden_dropout_prob,
activation=hidden_act,
attn_dropout=attention_probs_dropout_prob,
act_dropout=0)
self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
self.pooler = RobertaPooler(hidden_size)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id).astype(self.pooler.dense.weight.dtype) * -1e9, axis=[1, 2])
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
encoder_outputs = self.encoder(embedding_output, attention_mask)
sequence_output = encoder_outputs
pooled_output = self.pooler(sequence_output)
return sequence_output, pooled_output
class RobertaForSequenceClassification(RobertaPretrainedModel):
"""
Model for sentence (pair) classification task with RoBERTa.
Args:
roberta (RobertaModel): An instance of `RobertaModel`.
num_classes (int, optional): The number of classes. Default 2
dropout (float, optional): The dropout probability for output of RoBERTa.
If None, use the same value as `hidden_dropout_prob` of `RobertaModel`
instance `Roberta`. Default None
"""
def __init__(self, roberta, num_classes=2, dropout=None):
super(RobertaForSequenceClassification, self).__init__()
self.num_classes = num_classes
self.roberta = roberta # allow roberta to be config
self.dropout = nn.Dropout(dropout if dropout is not None else self.roberta.config["hidden_dropout_prob"])
self.classifier = nn.Linear(self.roberta.config["hidden_size"], num_classes)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None):
_, pooled_output = self.roberta(
input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
return logits
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -13,7 +12,333 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# FIXME(zhangxuefei): remove this file after paddlenlp is released.
class DataFormatError(Exception):
def __init__(self, *args):
self.args = args
import copy
import functools
import inspect
import io
import json
import os
import six
import paddle
import paddle.nn as nn
from paddle.dataset.common import DATA_HOME
from paddle.utils.download import get_path_from_url
from paddlehub.utils.log import logger
__all__ = [
'PretrainedModel',
'register_base_model',
]
def fn_args_to_dict(func, *args, **kwargs):
"""
Inspect function `func` and its arguments for running, and extract a
dict mapping between argument names and keys.
"""
if hasattr(inspect, 'getfullargspec'):
(spec_args, spec_varargs, spec_varkw, spec_defaults, _, _, _) = inspect.getfullargspec(func)
else:
(spec_args, spec_varargs, spec_varkw, spec_defaults) = inspect.getargspec(func)
# add positional argument values
init_dict = dict(zip(spec_args, args))
# add default argument values
kwargs_dict = dict(zip(spec_args[-len(spec_defaults):], spec_defaults)) if spec_defaults else {}
kwargs_dict.update(kwargs)
init_dict.update(kwargs_dict)
return init_dict
class InitTrackerMeta(type(nn.Layer)):
"""
This metaclass wraps the `__init__` method of a class to add `init_config`
attribute for instances of that class, and `init_config` use a dict to track
the initial configuration. If the class has `_wrap_init` method, it would be
hooked after `__init__` and called as `_wrap_init(self, init_fn, init_args)`.
Since InitTrackerMeta would be used as metaclass for pretrained model classes,
which always are Layer and `type(nn.Layer)` is not `type`, thus use `type(nn.Layer)`
rather than `type` as base class for it to avoid inheritance metaclass
conflicts.
"""
def __init__(cls, name, bases, attrs):
init_func = cls.__init__
# If attrs has `__init__`, wrap it using accessable `_wrap_init`.
# Otherwise, no need to wrap again since the super cls has been wraped.
# TODO: remove reduplicated tracker if using super cls `__init__`
help_func = getattr(cls, '_wrap_init', None) if '__init__' in attrs else None
cls.__init__ = InitTrackerMeta.init_and_track_conf(init_func, help_func)
super(InitTrackerMeta, cls).__init__(name, bases, attrs)
@staticmethod
def init_and_track_conf(init_func, help_func=None):
"""
wraps `init_func` which is `__init__` method of a class to add `init_config`
attribute for instances of that class.
Args:
init_func (callable): It should be the `__init__` method of a class.
help_func (callable, optional): If provided, it would be hooked after
`init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`.
Default None.
Returns:
function: the wrapped function
"""
@functools.wraps(init_func)
def __impl__(self, *args, **kwargs):
# keep full configuration
init_func(self, *args, **kwargs)
# registed helper by `_wrap_init`
if help_func:
help_func(self, init_func, *args, **kwargs)
self.init_config = kwargs
if args:
kwargs['init_args'] = args
kwargs['init_class'] = self.__class__.__name__
return __impl__
def register_base_model(cls):
"""
Add a `base_model_class` attribute for the base class of decorated class,
representing the base model class in derived classes of the same architecture.
Args:
cls (class): the name of the model
"""
base_cls = cls.__bases__[0]
assert issubclass(base_cls,
PretrainedModel), "`register_base_model` should be used on subclasses of PretrainedModel."
base_cls.base_model_class = cls
return cls
@six.add_metaclass(InitTrackerMeta)
class PretrainedModel(nn.Layer):
"""
The base class for all pretrained models. It provides some attributes and
common methods for all pretrained models, including attributes `init_config`,
`config` for initialized arguments and methods for saving, loading.
It also includes some class attributes (should be set by derived classes):
- `model_config_file` (str): represents the file name for saving and loading
model configuration, it's value is `model_config.json`.
- `resource_files_names` (dict): use this to map resources to specific file
names for saving and loading.
- `pretrained_resource_files_map` (dict): The dict has the same keys as
`resource_files_names`, the values are also dict mapping specific pretrained
model name to URL linking to pretrained model.
- `pretrained_init_configuration` (dict): The dict has pretrained model names
as keys, and the values are also dict preserving corresponding configuration
for model initialization.
- `base_model_prefix` (str): represents the the attribute associated to the
base model in derived classes of the same architecture adding layers on
top of the base model.
"""
model_config_file = "model_config.json"
pretrained_init_configuration = {}
# TODO: more flexible resource handle, namedtuple with fileds as:
# resource_name, saved_file, handle_name_for_load(None for used as __init__
# arguments), handle_name_for_save
resource_files_names = {"model_state": "model_state.pdparams"}
pretrained_resource_files_map = {}
base_model_prefix = ""
def _wrap_init(self, original_init, *args, **kwargs):
"""
It would be hooked after `__init__` to add a dict including arguments of
`__init__` as a attribute named `config` of the prtrained model instance.
"""
init_dict = fn_args_to_dict(original_init, *args, **kwargs)
self.config = init_dict
@property
def base_model(self):
return getattr(self, self.base_model_prefix, self)
@property
def model_name_list(self):
return list(self.pretrained_init_configuration.keys())
def get_input_embeddings(self):
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
return base_model.get_input_embeddings()
else:
raise NotImplementedError
def get_output_embeddings(self):
return None # Overwrite for models with output embeddings
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
"""
Instantiate an instance of `PretrainedModel` from a predefined
model specified by name or path.
Args:
pretrained_model_name_or_path (str): A name of or a file path to a
pretrained model.
*args (tuple): position arguments for `__init__`. If provide, use
this as position argument values for model initialization.
**kwargs (dict): keyword arguments for `__init__`. If provide, use
this to update pre-defined keyword argument values for model
initialization.
Returns:
PretrainedModel: An instance of PretrainedModel.
"""
pretrained_models = list(cls.pretrained_init_configuration.keys())
resource_files = {}
init_configuration = {}
if pretrained_model_name_or_path in pretrained_models:
for file_id, map_list in cls.pretrained_resource_files_map.items():
resource_files[file_id] = map_list[pretrained_model_name_or_path]
init_configuration = copy.deepcopy(cls.pretrained_init_configuration[pretrained_model_name_or_path])
else:
if os.path.isdir(pretrained_model_name_or_path):
for file_id, file_name in cls.resource_files_names.items():
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
resource_files[file_id] = full_file_name
resource_files["model_config_file"] = os.path.join(pretrained_model_name_or_path, cls.model_config_file)
else:
raise ValueError("Calling {}.from_pretrained() with a model identifier or the "
"path to a directory instead. The supported model "
"identifiers are as follows: {}".format(cls.__name__,
cls.pretrained_init_configuration.keys()))
# FIXME(chenzeyu01): We should use another data path for storing model
default_root = os.path.join(DATA_HOME, pretrained_model_name_or_path)
resolved_resource_files = {}
for file_id, file_path in resource_files.items():
path = os.path.join(default_root, file_path.split('/')[-1])
if file_path is None or os.path.isfile(file_path):
resolved_resource_files[file_id] = file_path
elif os.path.exists(path):
logger.info("Already cached %s" % path)
resolved_resource_files[file_id] = path
else:
logger.info("Downloading %s and saved to %s" % (file_path, default_root))
resolved_resource_files[file_id] = get_path_from_url(file_path, default_root)
# Prepare model initialization kwargs
# Did we saved some inputs and kwargs to reload ?
model_config_file = resolved_resource_files.pop("model_config_file", None)
if model_config_file is not None:
with io.open(model_config_file, encoding="utf-8") as f:
init_kwargs = json.load(f)
else:
init_kwargs = init_configuration
# position args are stored in kwargs, maybe better not include
init_args = init_kwargs.pop("init_args", ())
# class name corresponds to this configuration
init_class = init_kwargs.pop("init_class", cls.base_model_class.__name__)
# Check if the loaded config matches the current model class's __init__
# arguments. If not match, the loaded config is for the base model class.
if init_class == cls.base_model_class.__name__:
base_args = init_args
base_kwargs = init_kwargs
derived_args = ()
derived_kwargs = {}
base_arg_index = None
else: # extract config for base model
derived_args = list(init_args)
derived_kwargs = init_kwargs
for i, arg in enumerate(init_args):
if isinstance(arg, dict) and "init_class" in arg:
assert arg.pop("init_class") == cls.base_model_class.__name__, (
"pretrained base model should be {}").format(cls.base_model_class.__name__)
base_arg_index = i
break
for arg_name, arg in init_kwargs.items():
if isinstance(arg, dict) and "init_class" in arg:
assert arg.pop("init_class") == cls.base_model_class.__name__, (
"pretrained base model should be {}").format(cls.base_model_class.__name__)
base_arg_index = arg_name
break
base_args = arg.pop("init_args", ())
base_kwargs = arg
if cls == cls.base_model_class:
# Update with newly provided args and kwargs for base model
base_args = base_args if not args else args
base_kwargs.update(kwargs)
model = cls(*base_args, **base_kwargs)
else:
# Update with newly provided args and kwargs for derived model
base_model = cls.base_model_class(*base_args, **base_kwargs)
if base_arg_index is not None:
derived_args[base_arg_index] = base_model
else:
derived_args = (base_model, ) # assume at the first position
derived_args = derived_args if not args else args
derived_kwargs.update(kwargs)
model = cls(*derived_args, **derived_kwargs)
# Maybe need more ways to load resources.
weight_path = list(resolved_resource_files.values())[0]
assert weight_path.endswith(".pdparams"), "suffix of weight must be .pdparams"
state_dict = paddle.load(weight_path)
# Make sure we are able to load base models as well as derived models
# (with heads)
start_prefix = ""
model_to_load = model
state_to_load = state_dict
unexpected_keys = []
missing_keys = []
if not hasattr(model, cls.base_model_prefix) and any(
s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
# base model
state_to_load = {}
start_prefix = cls.base_model_prefix + "."
for k, v in state_dict.items():
if k.startswith(cls.base_model_prefix):
state_to_load[k[len(start_prefix):]] = v
else:
unexpected_keys.append(k)
if hasattr(model,
cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
# derived model (base model with heads)
model_to_load = getattr(model, cls.base_model_prefix)
for k in model.state_dict().keys():
if not k.startswith(cls.base_model_prefix):
missing_keys.append(k)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__,
unexpected_keys))
model_to_load.set_state_dict(state_to_load)
if paddle.in_dynamic_mode():
return model
return model, state_to_load
def save_pretrained(self, save_directory):
"""
Save model configuration and related resources (model state) to files
under `save_directory`.
Args:
save_directory (str): Directory to save files into.
"""
assert os.path.isdir(save_directory), "Saving directory ({}) should be a directory".format(save_directory)
# save model config
model_config_file = os.path.join(save_directory, self.model_config_file)
model_config = self.init_config
# If init_config contains a Layer, use the layer's init_config to save
for key, value in model_config.items():
if key == "init_args":
args = []
for arg in value:
args.append(arg.init_config if isinstance(arg, PretrainedModel) else arg)
model_config[key] = tuple(args)
elif isinstance(value, PretrainedModel):
model_config[key] = value.init_config
with io.open(model_config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(model_config, ensure_ascii=False))
# save model
file_name = os.path.join(save_directory, list(self.resource_files_names.values())[0])
paddle.save(self.state_dict(), file_name)
......@@ -20,7 +20,7 @@ import pickle
import unicodedata
from typing import Dict, List, Optional, Union, Tuple
import sentencepiece as spm
from paddle.utils import try_import
from paddlehub.text.utils import load_vocab, is_whitespace, is_control, is_punctuation, whitespace_tokenize, is_chinese_char
......@@ -509,9 +509,9 @@ class BertTokenizer(object):
max_seq_len: Optional[int] = None,
pad_to_max_seq_len: bool = True,
truncation_strategy: str = 'longest_first',
return_position_ids: bool = True,
return_position_ids: bool = False,
return_segment_ids: bool = True,
return_input_mask: bool = True,
return_input_mask: bool = False,
return_length: bool = True,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False):
......@@ -541,11 +541,11 @@ class BertTokenizer(object):
- 'only_first': Only truncate the first sequence
- 'only_second': Only truncate the second sequence
- 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_seq_len)
return_position_ids (:obj:`bool`, `optional`, defaults to :obj:`True`):
return_position_ids (:obj:`bool`, `optional`, defaults to :obj:`False`):
Set to True to return tokens position ids (default True).
return_segment_ids (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to return token type IDs.
return_input_mask (:obj:`bool`, `optional`, defaults to :obj:`True`):
return_input_mask (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to return the attention mask.
return_length (:obj:`int`, defaults to :obj:`True`):
If set the resulting dictionary will include the length of each encoded inputs
......@@ -612,7 +612,6 @@ class BertTokenizer(object):
encoded_inputs['num_truncated_tokens'] = total_len - max_seq_len
# Add special tokens
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
segment_ids = self.create_segment_ids_from_sequences(ids, pair_ids)
......@@ -704,6 +703,7 @@ class ErnieTinyTokenizer(BertTokenizer):
cls_token: str = '[CLS]',
mask_token: str = '[MASK]',
):
mod = try_import('sentencepiece')
self.unk_token = unk_token
self.sep_token = sep_token
self.pad_token = pad_token
......@@ -719,7 +719,7 @@ class ErnieTinyTokenizer(BertTokenizer):
# Here is the difference with BertTokenizer.
self.dict = pickle.load(open(word_dict_path, 'rb'))
self.sp_model = spm.SentencePieceProcessor()
self.sp_model = mod.SentencePieceProcessor()
self.window_size = 5
self.sp_model.Load(spm_path)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册