diff --git a/modules/text/text_generation/ernie_tiny/README.md b/modules/text/text_generation/ernie_tiny/README.md
deleted file mode 100644
index 15c6543286655543a7e1345d3b1fdf7394c6b8ef..0000000000000000000000000000000000000000
--- a/modules/text/text_generation/ernie_tiny/README.md
+++ /dev/null
@@ -1,126 +0,0 @@
-# ernie_tiny
-
-|模型名称|ernie_tiny|
-| :--- | :---: |
-|类别|图像 - 图像生成|
-|网络|SPADEGenerator|
-|数据集|coco_stuff|
-|是否支持Fine-tuning|否|
-|模型大小|74MB|
-|最新更新日期|2021-12-14|
-|数据指标|-|
-
-
-## 一、模型基本信息
-
-- ### 应用效果展示
- - 样例结果示例:
-
-
-
-
-- ### 模型介绍
-
- - 本模块采用一个像素风格迁移网络 Pix2PixHD,能够根据输入的语义分割标签生成照片风格的图片。为了解决模型归一化层导致标签语义信息丢失的问题,向 Pix2PixHD 的生成器网络中添加了 SPADE(Spatially-Adaptive
- Normalization)空间自适应归一化模块,通过两个卷积层保留了归一化时训练的缩放与偏置参数的空间维度,以增强生成图片的质量。语义风格标签图像可以参考[coco_stuff数据集](https://github.com/nightrome/cocostuff)获取, 也可以通过[PaddleGAN repo中的该项目](https://github.com/PaddlePaddle/PaddleGAN/blob/87537ad9d4eeda17eaa5916c6a585534ab989ea8/docs/zh_CN/tutorials/photopen.md)来自定义生成图像进行体验。
-
-
-
-## 二、安装
-
-- ### 1、环境依赖
- - ppgan
-
-- ### 2、安装
-
- - ```shell
- $ hub install photopen
- ```
- - 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
- | [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
-
-## 三、模型API预测
-
-- ### 1、命令行预测
-
- - ```shell
- # Read from a file
- $ hub run photopen --input_path "/PATH/TO/IMAGE"
- ```
- - 通过命令行方式实现图像生成模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
-
-- ### 2、预测代码示例
-
- - ```python
- import paddlehub as hub
-
- module = hub.Module(name="photopen")
- input_path = ["/PATH/TO/IMAGE"]
- # Read from a file
- module.photo_transfer(paths=input_path, output_dir='./transfer_result/', use_gpu=True)
- ```
-
-- ### 3、API
-
- - ```python
- photo_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True):
- ```
- - 图像转换生成API。
-
- - **参数**
-
- - images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];
- - paths (list\[str\]): 图片的路径;
- - output\_dir (str): 结果保存的路径;
- - use\_gpu (bool): 是否使用 GPU;
- - visualization(bool): 是否保存结果到本地文件夹
-
-
-## 四、服务部署
-
-- PaddleHub Serving可以部署一个在线图像转换生成服务。
-
-- ### 第一步:启动PaddleHub Serving
-
- - 运行启动命令:
- - ```shell
- $ hub serving start -m photopen
- ```
-
- - 这样就完成了一个图像转换生成的在线服务API的部署,默认端口号为8866。
-
- - **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
-
-- ### 第二步:发送预测请求
-
- - 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
- - ```python
- import requests
- import json
- import cv2
- import base64
-
-
- def cv2_to_base64(image):
- data = cv2.imencode('.jpg', image)[1]
- return base64.b64encode(data.tostring()).decode('utf8')
-
- # 发送HTTP请求
- data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
- headers = {"Content-type": "application/json"}
- url = "http://127.0.0.1:8866/predict/photopen"
- r = requests.post(url=url, headers=headers, data=json.dumps(data))
-
- # 打印预测结果
- print(r.json()["results"])
-
-## 五、更新历史
-
-* 1.0.0
-
- 初始发布
-
- - ```shell
- $ hub install ernie_tiny==1.1.0
- ```
diff --git a/modules/text/text_generation/ernie_tiny/README_en.md b/modules/text/text_generation/ernie_tiny/README_en.md
deleted file mode 100644
index 373348799089cc370f90335e6290c0ce38a8a11c..0000000000000000000000000000000000000000
--- a/modules/text/text_generation/ernie_tiny/README_en.md
+++ /dev/null
@@ -1,171 +0,0 @@
-# ernie_tiny
-
-|Module Name|ernie_tiny|
-| :--- | :---: |
-|Category|object detection|
-|Network|faster_rcnn|
-|Dataset|COCO2017|
-|Fine-tuning supported or not|No|
-|Module Size|161MB|
-|Latest update date|2021-03-15|
-|Data indicators|-|
-
-
-## I.Basic Information
-
-- ### Application Effect Display
- - Sample results:
-
-
-
-
-
-- ### Module Introduction
-
- - Faster_RCNN is a two-stage detector, it consists of feature extraction, proposal, classification and refinement processes. This module is trained on COCO2017 dataset, and can be used for object detection.
-
-
-## II.Installation
-
-- ### 1、Environmental Dependence
-
- - paddlepaddle >= 1.6.2
-
- - paddlehub >= 1.6.0 | [How to install PaddleHub](../../../../docs/docs_en/get_start/installation.rst)
-
-- ### 2、Installation
-
- - ```shell
- $ hub install faster_rcnn_resnet50_fpn_coco2017
- ```
- - In case of any problems during installation, please refer to: [Windows_Quickstart](../../../../docs/docs_en/get_start/windows_quickstart.md) | [Linux_Quickstart](../../../../docs/docs_en/get_start/linux_quickstart.md) | [Mac_Quickstart](../../../../docs/docs_en/get_start/mac_quickstart.md)
-
-## III.Module API Prediction
-
-- ### 1、Command line Prediction
-
- - ```shell
- $ hub run faster_rcnn_resnet50_fpn_coco2017 --input_path "/PATH/TO/IMAGE"
- ```
- - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
-
-- ### 2、Prediction Code Example
-
- - ```python
- import paddlehub as hub
- import cv2
-
- object_detector = hub.Module(name="faster_rcnn_resnet50_fpn_coco2017")
- result = object_detector.object_detection(images=[cv2.imread('/PATH/TO/IMAGE')])
- # or
- # result = object_detector.object_detection((paths=['/PATH/TO/IMAGE'])
- ```
-
-- ### 3、API
-
- - ```python
- def object_detection(paths=None,
- images=None,
- batch_size=1,
- use_gpu=False,
- output_dir='detection_result',
- score_thresh=0.5,
- visualization=True)
- ```
-
- - Detection API, detect positions of all objects in image
-
- - **Parameters**
-
- - paths (list[str]): image path;
- - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR;
- - batch_size (int): the size of batch;
- - use_gpu (bool): use GPU or not; **set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU**
- - output_dir (str): save path of images;
- - score\_thresh (float): confidence threshold;
- - visualization (bool): Whether to save the results as picture files;
-
- **NOTE:** choose one parameter to provide data from paths and images
-
- - **Return**
-
- - res (list\[dict\]): results
- - data (list): detection results, each element in the list is dict
- - confidence (float): the confidence of the result
- - label (str): label
- - left (int): the upper left corner x coordinate of the detection box
- - top (int): the upper left corner y coordinate of the detection box
- - right (int): the lower right corner x coordinate of the detection box
- - bottom (int): the lower right corner y coordinate of the detection box
- - save\_path (str, optional): output path for saving results
-
-
- - ```python
- def save_inference_model(dirname,
- model_filename=None,
- params_filename=None,
- combined=True)
- ```
- - Save model to specific path
-
- - **Parameters**
-
- - dirname: output dir for saving model
- - model\_filename: filename for saving model
- - params\_filename: filename for saving parameters
- - combined: whether save parameters into one file
-
-
-## IV.Server Deployment
-
-- PaddleHub Serving can deploy an online service of object detection.
-
-- ### Step 1: Start PaddleHub Serving
-
- - Run the startup command:
- - ```shell
- $ hub serving start -m faster_rcnn_resnet50_fpn_coco2017
- ```
-
- - The servitization API is now deployed and the default port number is 8866.
-
- - **NOTE:** If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set.
-
-- ### Step 2: Send a predictive request
-
- - With a configured server, use the following lines of code to send the prediction request and obtain the result
-
- - ```python
- import requests
- import json
- import cv2
- import base64
-
-
- def cv2_to_base64(image):
- data = cv2.imencode('.jpg', image)[1]
- return base64.b64encode(data.tostring()).decode('utf8')
-
- # Send an HTTP request
- data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
- headers = {"Content-type": "application/json"}
- url = "http://127.0.0.1:8866/predict/faster_rcnn_resnet50_fpn_coco2017"
- r = requests.post(url=url, headers=headers, data=json.dumps(data))
-
- # print prediction results
- print(r.json()["results"])
- ```
-
-
-## V.Release Note
-
-* 1.0.0
-
- First release
-
-* 1.0.1
-
- Fix the problem of reading numpy
- - ```shell
- $ hub install ernie_tiny==1.1.0
- ```