未验证 提交 b547f728 编写于 作者: S Steffy-zxf 提交者: GitHub

Update autofinetune.md

上级 e2cdf4ba
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
## 一、简介 ## 一、简介
目前深度学习模型参数可分两类:*模型参数 (Model Parameters)**超参数 (Hyper Parameters)*,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub AutoDL Finetuner可以实现自动调整超参数。 目前深度学习模型参数可分两类:*模型参数 (Model Parameters)**超参数 (Hyper Parameters)*,前者是模型通过大量的样本数据进行训练学习得到的参数数据;后者则需要通过人工经验或者不断尝试找到最佳设置(如学习率、dropout_rate、batch_size等),以提高模型训练的效果。如果想得到一个效果好的深度学习神经网络模型,超参的设置非常关键。因为模型参数空间大,目前超参调整都是通过手动,依赖人工经验或者不断尝试,且不同模型、样本数据和场景下不尽相同,所以需要大量尝试,时间成本和资源成本非常浪费。PaddleHub AutoDL Finetuner可以实现自动调整超参数。
PaddleHub AutoDL Finetuner提供两种超参优化算法: PaddleHub AutoDL Finetuner提供两种超参优化算法:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册