Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
b0d82b3d
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0d82b3d
编写于
9月 13, 2021
作者:
H
houj04
提交者:
GitHub
9月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
lac support npu and xpu (#1613)
上级
e420428b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
150 addition
and
88 deletion
+150
-88
modules/text/lexical_analysis/lac/module.py
modules/text/lexical_analysis/lac/module.py
+148
-86
modules/text/lexical_analysis/lac/processor.py
modules/text/lexical_analysis/lac/processor.py
+2
-2
未找到文件。
modules/text/lexical_analysis/lac/module.py
浏览文件 @
b0d82b3d
...
@@ -13,7 +13,10 @@ import six
...
@@ -13,7 +13,10 @@ import six
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
import
paddlehub
as
hub
import
paddlehub
as
hub
from
paddlehub.common.logger
import
logger
from
paddlehub.common.logger
import
logger
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
paddlehub.common.paddle_helper
import
add_vars_prefix
...
@@ -62,26 +65,86 @@ class LAC(hub.Module):
...
@@ -62,26 +65,86 @@ class LAC(hub.Module):
self
.
_set_config
()
self
.
_set_config
()
def
_get_device_id
(
self
,
places
):
try
:
places
=
os
.
environ
[
places
]
id
=
int
(
places
)
except
:
id
=
-
1
return
id
def
_set_config
(
self
):
def
_set_config
(
self
):
"""
"""
predictor config setting
predictor config setting
"""
"""
cpu_config
=
AnalysisConfig
(
self
.
pretrained_model_path
)
# create default cpu predictor
cpu_config
=
Config
(
self
.
pretrained_model_path
)
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_glog_info
()
cpu_config
.
disable_gpu
()
cpu_config
.
disable_gpu
()
self
.
cpu_predictor
=
create_paddle_predictor
(
cpu_config
)
self
.
cpu_predictor
=
create_predictor
(
cpu_config
)
try
:
# create predictors using various types of devices
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
int
(
_places
[
0
])
# npu
use_gpu
=
True
npu_id
=
self
.
_get_device_id
(
"FLAGS_selected_npus"
)
except
:
if
npu_id
!=
-
1
:
use_gpu
=
False
# use npu
if
use_gpu
:
npu_config
=
Config
(
self
.
pretrained_model_path
)
gpu_config
=
AnalysisConfig
(
self
.
pretrained_model_path
)
npu_config
.
disable_glog_info
()
npu_config
.
enable_npu
(
device_id
=
npu_id
)
self
.
npu_predictor
=
create_predictor
(
npu_config
)
# gpu
gpu_id
=
self
.
_get_device_id
(
"CUDA_VISIBLE_DEVICES"
)
if
gpu_id
!=
-
1
:
# use gpu
gpu_config
=
Config
(
self
.
pretrained_model_path
)
gpu_config
.
disable_glog_info
()
gpu_config
.
disable_glog_info
()
gpu_config
.
enable_use_gpu
(
memory_pool_init_size_mb
=
500
,
device_id
=
0
)
gpu_config
.
enable_use_gpu
(
memory_pool_init_size_mb
=
500
,
device_id
=
gpu_id
)
self
.
gpu_predictor
=
create_paddle_predictor
(
gpu_config
)
self
.
gpu_predictor
=
create_predictor
(
gpu_config
)
# xpu
xpu_id
=
self
.
_get_device_id
(
"XPU_VISIBLE_DEVICES"
)
if
xpu_id
!=
-
1
:
# use xpu
xpu_config
=
Config
(
self
.
pretrained_model_path
)
xpu_config
.
disable_glog_info
()
xpu_config
.
enable_xpu
(
100
)
self
.
xpu_predictor
=
create_predictor
(
xpu_config
)
def
_internal_predict
(
self
,
predictor
,
texts
):
"""
Tranform the texts(list) to Tensor and then do "real predict"
Args:
texts(list): texts
Returns:
result(PaddleInferTensor): predict output
"""
# texts to data and lod
lod
=
[
0
]
data
=
[]
for
i
,
text
in
enumerate
(
texts
):
text_inds
=
word_to_ids
(
text
,
self
.
word2id_dict
,
self
.
word_replace_dict
,
oov_id
=
self
.
oov_id
)
data
+=
text_inds
lod
.
append
(
len
(
text_inds
)
+
lod
[
i
])
# get predictor tensor
input_names
=
predictor
.
get_input_names
()
input_tensor
=
predictor
.
get_input_handle
(
input_names
[
0
])
# set data, shape and lod
input_tensor
.
copy_from_cpu
(
np
.
array
(
data
).
astype
(
'int64'
))
input_tensor
.
reshape
([
lod
[
-
1
],
1
])
input_tensor
.
set_lod
([
lod
])
# real predict
predictor
.
run
()
output_names
=
predictor
.
get_output_names
()
output_handle
=
predictor
.
get_output_handle
(
output_names
[
0
])
return
output_handle
def
context
(
self
,
trainable
=
False
):
def
context
(
self
,
trainable
=
False
):
"""
"""
...
@@ -167,26 +230,6 @@ class LAC(hub.Module):
...
@@ -167,26 +230,6 @@ class LAC(hub.Module):
texts
=
unicode_texts
texts
=
unicode_texts
return
texts
return
texts
def
texts2tensor
(
self
,
texts
):
"""
Tranform the texts(list) to PaddleTensor
Args:
texts(list): texts
Returns:
tensor(PaddleTensor): tensor with texts data
"""
lod
=
[
0
]
data
=
[]
for
i
,
text
in
enumerate
(
texts
):
text_inds
=
word_to_ids
(
text
,
self
.
word2id_dict
,
self
.
word_replace_dict
,
oov_id
=
self
.
oov_id
)
data
+=
text_inds
lod
.
append
(
len
(
text_inds
)
+
lod
[
i
])
tensor
=
PaddleTensor
(
np
.
array
(
data
).
astype
(
'int64'
))
tensor
.
name
=
"words"
tensor
.
lod
=
[
lod
]
tensor
.
shape
=
[
lod
[
-
1
],
1
]
return
tensor
def
_get_index
(
self
,
data_list
,
item
=
""
):
def
_get_index
(
self
,
data_list
,
item
=
""
):
"""
"""
find all indexes of item in data_list
find all indexes of item in data_list
...
@@ -198,7 +241,7 @@ class LAC(hub.Module):
...
@@ -198,7 +241,7 @@ class LAC(hub.Module):
return
res
return
res
@
serving
@
serving
def
cut
(
self
,
text
,
use_gpu
=
False
,
batch_size
=
1
,
return_tag
=
True
):
def
cut
(
self
,
text
,
use_gpu
=
False
,
batch_size
=
1
,
return_tag
=
True
,
use_device
=
None
):
"""
"""
The main function that segments an entire text that contains
The main function that segments an entire text that contains
Chinese characters into separated words.
Chinese characters into separated words.
...
@@ -207,20 +250,32 @@ class LAC(hub.Module):
...
@@ -207,20 +250,32 @@ class LAC(hub.Module):
use_gpu(bool): whether use gpu to predict or not
use_gpu(bool): whether use gpu to predict or not
batch_size(int): the program deals once with one batch
batch_size(int): the program deals once with one batch
return_tag: Whether to get tag or not.
return_tag: Whether to get tag or not.
use_device (str): use cpu, gpu, xpu or npu, overwrites use_gpu flag.
Returns:
Returns:
results(dict or list): The word segmentation result of the input text, whose key is 'word', if text is a list.
results(dict or list): The word segmentation result of the input text, whose key is 'word', if text is a list.
If text is a str, the word segmentation result (list) is obtained.
If text is a str, the word segmentation result (list) is obtained.
"""
"""
# real predictor to use
if
use_device
is
not
None
:
if
use_device
==
"cpu"
:
predictor
=
self
.
cpu_predictor
elif
use_device
==
"xpu"
:
predictor
=
self
.
xpu_predictor
elif
use_device
==
"npu"
:
predictor
=
self
.
npu_predictor
elif
use_device
==
"gpu"
:
predictor
=
self
.
gpu_predictor
else
:
raise
Exception
(
"Unsupported device: "
+
use_device
)
else
:
# use_device is not set, therefore follow use_gpu
if
use_gpu
:
if
use_gpu
:
try
:
predictor
=
self
.
gpu_predictor
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
else
:
int
(
_places
[
0
])
predictor
=
self
.
cpu_predictor
except
:
raise
RuntimeError
(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if
isinstance
(
text
,
list
)
and
len
(
text
)
!=
0
:
if
isinstance
(
text
,
list
)
and
len
(
text
)
!=
0
:
...
@@ -240,13 +295,8 @@ class LAC(hub.Module):
...
@@ -240,13 +295,8 @@ class LAC(hub.Module):
batch_data
=
predicted_data
[
start_idx
:]
batch_data
=
predicted_data
[
start_idx
:]
start_idx
=
start_idx
+
batch_size
start_idx
=
start_idx
+
batch_size
tensor_words
=
self
.
texts2tensor
(
batch_data
)
batch_out
=
self
.
_internal_predict
(
predictor
,
batch_data
)
batch_result
=
parse_result
(
batch_data
,
batch_out
,
self
.
id2label_dict
,
interventer
=
self
.
custom
)
if
use_gpu
:
batch_out
=
self
.
gpu_predictor
.
run
([
tensor_words
])
else
:
batch_out
=
self
.
cpu_predictor
.
run
([
tensor_words
])
batch_result
=
parse_result
(
batch_data
,
batch_out
[
0
],
self
.
id2label_dict
,
interventer
=
self
.
custom
)
results
+=
batch_result
results
+=
batch_result
for
index
in
empty_str_indexes
:
for
index
in
empty_str_indexes
:
...
@@ -259,13 +309,8 @@ class LAC(hub.Module):
...
@@ -259,13 +309,8 @@ class LAC(hub.Module):
return
results
return
results
elif
isinstance
(
text
,
str
)
and
text
!=
""
:
elif
isinstance
(
text
,
str
)
and
text
!=
""
:
tensor_words
=
self
.
texts2tensor
([
text
])
batch_out
=
self
.
_internal_predict
(
predictor
,
[
text
])
batch_result
=
parse_result
([
text
],
batch_out
,
self
.
id2label_dict
,
interventer
=
self
.
custom
)
if
use_gpu
:
batch_out
=
self
.
gpu_predictor
.
run
([
tensor_words
])
else
:
batch_out
=
self
.
cpu_predictor
.
run
([
tensor_words
])
batch_result
=
parse_result
([
text
],
batch_out
[
0
],
self
.
id2label_dict
,
interventer
=
self
.
custom
)
return
batch_result
[
0
][
'word'
]
return
batch_result
[
0
][
'word'
]
elif
text
==
""
:
elif
text
==
""
:
...
@@ -273,7 +318,7 @@ class LAC(hub.Module):
...
@@ -273,7 +318,7 @@ class LAC(hub.Module):
else
:
else
:
raise
TypeError
(
"The input data is inconsistent with expectations."
)
raise
TypeError
(
"The input data is inconsistent with expectations."
)
def
lexical_analysis
(
self
,
texts
=
[],
data
=
{},
use_gpu
=
False
,
batch_size
=
1
,
return_tag
=
True
):
def
lexical_analysis
(
self
,
texts
=
[],
data
=
{},
use_gpu
=
False
,
batch_size
=
1
,
return_tag
=
True
,
use_device
=
None
):
"""
"""
Get the word segmentation results with the texts as input
Get the word segmentation results with the texts as input
...
@@ -283,19 +328,30 @@ class LAC(hub.Module):
...
@@ -283,19 +328,30 @@ class LAC(hub.Module):
use_gpu(bool): whether use gpu to predict or not
use_gpu(bool): whether use gpu to predict or not
batch_size(int): the program deals once with one batch
batch_size(int): the program deals once with one batch
return_tag: Whether to get tag or not.
return_tag: Whether to get tag or not.
use_device (str): use cpu, gpu, xpu or npu, overwrites use_gpu flag.
Returns:
Returns:
results(list): the word segmentation results
results(list): the word segmentation results
"""
"""
# real predictor to use
if
use_device
is
not
None
:
if
use_device
==
"cpu"
:
predictor
=
self
.
cpu_predictor
elif
use_device
==
"xpu"
:
predictor
=
self
.
xpu_predictor
elif
use_device
==
"npu"
:
predictor
=
self
.
npu_predictor
elif
use_device
==
"gpu"
:
predictor
=
self
.
gpu_predictor
else
:
raise
Exception
(
"Unsupported device: "
+
use_device
)
else
:
# use_device is not set, therefore follow use_gpu
if
use_gpu
:
if
use_gpu
:
try
:
predictor
=
self
.
gpu_predictor
_places
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
else
:
int
(
_places
[
0
])
predictor
=
self
.
cpu_predictor
except
:
raise
RuntimeError
(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if
texts
!=
[]
and
isinstance
(
texts
,
list
)
and
data
==
{}:
if
texts
!=
[]
and
isinstance
(
texts
,
list
)
and
data
==
{}:
predicted_data
=
texts
predicted_data
=
texts
...
@@ -320,13 +376,8 @@ class LAC(hub.Module):
...
@@ -320,13 +376,8 @@ class LAC(hub.Module):
batch_data
=
predicted_data
[
start_idx
:]
batch_data
=
predicted_data
[
start_idx
:]
start_idx
=
start_idx
+
batch_size
start_idx
=
start_idx
+
batch_size
tensor_words
=
self
.
texts2tensor
(
batch_data
)
batch_out
=
self
.
_internal_predict
(
predictor
,
batch_data
)
batch_result
=
parse_result
(
batch_data
,
batch_out
,
self
.
id2label_dict
,
interventer
=
self
.
custom
)
if
use_gpu
:
batch_out
=
self
.
gpu_predictor
.
run
([
tensor_words
])
else
:
batch_out
=
self
.
cpu_predictor
.
run
([
tensor_words
])
batch_result
=
parse_result
(
batch_data
,
batch_out
[
0
],
self
.
id2label_dict
,
interventer
=
self
.
custom
)
results
+=
batch_result
results
+=
batch_result
for
index
in
empty_str_indexes
:
for
index
in
empty_str_indexes
:
...
@@ -344,8 +395,10 @@ class LAC(hub.Module):
...
@@ -344,8 +395,10 @@ class LAC(hub.Module):
"""
"""
Run as a command
Run as a command
"""
"""
self
.
parser
=
argparse
.
ArgumentParser
(
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the lac module."
,
description
=
"Run the lac module."
,
prog
=
'hub run lac'
,
usage
=
'%(prog)s'
,
add_help
=
True
)
prog
=
'hub run lac'
,
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
...
@@ -365,8 +418,11 @@ class LAC(hub.Module):
...
@@ -365,8 +418,11 @@ class LAC(hub.Module):
if
args
.
user_dict
:
if
args
.
user_dict
:
self
.
set_user_dict
(
args
.
user_dict
)
self
.
set_user_dict
(
args
.
user_dict
)
results
=
self
.
lexical_analysis
(
results
=
self
.
lexical_analysis
(
texts
=
input_data
,
texts
=
input_data
,
use_gpu
=
args
.
use_gpu
,
batch_size
=
args
.
batch_size
,
return_tag
=
args
.
return_tag
)
use_gpu
=
args
.
use_gpu
,
batch_size
=
args
.
batch_size
,
return_tag
=
args
.
return_tag
,
use_device
=
args
.
use_device
)
return
results
return
results
...
@@ -388,17 +444,23 @@ class LAC(hub.Module):
...
@@ -388,17 +444,23 @@ class LAC(hub.Module):
"""
"""
Add the command config options
Add the command config options
"""
"""
self
.
arg_config_group
.
add_argument
(
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not"
)
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"whether use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
1
,
help
=
"batch size for prediction"
)
self
.
arg_config_group
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
1
,
help
=
"batch size for prediction"
)
self
.
arg_config_group
.
add_argument
(
self
.
arg_config_group
.
add_argument
(
'--user_dict'
,
'--user_dict'
,
type
=
str
,
type
=
str
,
default
=
None
,
default
=
None
,
help
=
"customized dictionary for intervening the word segmentation result"
)
help
=
"customized dictionary for intervening the word segmentation result"
)
self
.
arg_config_group
.
add_argument
(
self
.
arg_config_group
.
add_argument
(
'--return_tag'
,
'--return_tag'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"whether return tags of results or not"
)
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
"whether return tags of results or not"
)
self
.
arg_config_group
.
add_argument
(
'--use_device'
,
choices
=
[
"cpu"
,
"gpu"
,
"xpu"
,
"npu"
],
help
=
"use cpu, gpu, xpu or npu. overwrites use_gpu flag."
)
def
add_module_input_arg
(
self
):
def
add_module_input_arg
(
self
):
"""
"""
...
...
modules/text/lexical_analysis/lac/processor.py
浏览文件 @
b0d82b3d
...
@@ -251,8 +251,8 @@ def word_to_ids(words, word2id_dict, word_replace_dict, oov_id=None):
...
@@ -251,8 +251,8 @@ def word_to_ids(words, word2id_dict, word_replace_dict, oov_id=None):
def
parse_result
(
lines
,
crf_decode
,
id2label_dict
,
interventer
=
None
):
def
parse_result
(
lines
,
crf_decode
,
id2label_dict
,
interventer
=
None
):
"""Convert model's output tensor into string and tags """
"""Convert model's output tensor into string and tags """
offset_list
=
crf_decode
.
lod
[
0
]
offset_list
=
crf_decode
.
lod
()
[
0
]
crf_decode
=
crf_decode
.
as_ndarray
()
crf_decode
=
crf_decode
.
copy_to_cpu
()
batch_size
=
len
(
offset_list
)
-
1
batch_size
=
len
(
offset_list
)
-
1
batch_out
=
[]
batch_out
=
[]
for
sent_index
in
range
(
batch_size
):
for
sent_index
in
range
(
batch_size
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录