Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
98e6c96d
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
281
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
You need to sign in or sign up before continuing.
未验证
提交
98e6c96d
编写于
12月 13, 2019
作者:
B
Bin Long
提交者:
GitHub
12月 13, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #263 from ShenYuhan/bert_as_service
Update Bert service
上级
6f9adbab
e3d50f81
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
73 addition
and
94 deletion
+73
-94
demo/serving/README.md
demo/serving/README.md
+1
-1
demo/serving/bert_service/README.md
demo/serving/bert_service/README.md
+57
-76
demo/serving/bert_service/bert_service_client.py
demo/serving/bert_service/bert_service_client.py
+1
-3
demo/serving/bert_service/img/bs.png
demo/serving/bert_service/img/bs.png
+0
-0
paddlehub/commands/serving.py
paddlehub/commands/serving.py
+3
-3
paddlehub/common/logger.py
paddlehub/common/logger.py
+1
-1
paddlehub/serving/bert_serving/bert_service.py
paddlehub/serving/bert_serving/bert_service.py
+10
-10
未找到文件。
demo/serving/README.md
浏览文件 @
98e6c96d
...
...
@@ -3,7 +3,7 @@
利用PaddleHub-Serving可以完成模型服务化部署,主要包括利用Bert as Service实现embedding服务化,利用预测模型实现预测服务化。
## 2. Bert as Service
*
[
Bert as Service介绍与示例
](
./bert_as
_service
)
*
[
Bert as Service介绍与示例
](
bert
_service
)
该示例展示了利用Bert as Service进行远程embedding服务化部署和在线预测,获取文本embedding结果。
...
...
demo/serving/bert_
as_
service/README.md
→
demo/serving/bert_service/README.md
浏览文件 @
98e6c96d
# Bert
as
Service
# Bert Service
## 1. 简介
### 1.1 什么是embedding
Embedding是指将一个维数为所有词数量的高维空间转换到维数较低的连续向量空间的过程,每个单词或词组被设置为实数域的向量。通过embedding能够在降低输入维度的同时保留其含义,常用于NLP任务的上游任务中。
### 1.2 什么是Bert as Service
Bert as Service是基于Paddle Serving框架的快速部署模型远程计算服务方案,可将embedding过程通过调用API接口的方式实现,减少了对机器资源的依赖。使用PaddleHub可在服务器上一键部署
`Bert as Service`
服务,在另外的普通机器上通过客户端接口即可轻松的获取文本对应的embedding数据。
### 1.1 什么是Bert Service
`Bert Service`
是基于Paddle Serving框架的快速部署模型远程计算服务方案,可将embedding过程通过调用API接口的方式实现,减少了对机器资源的依赖。使用PaddleHub可在服务器上一键部署
`Bert Service`
服务,在另外的普通机器上通过客户端接口即可轻松的获取文本对应的embedding数据。
整体流程图如下:
<div
align=
"center"
>
...
...
@@ -12,32 +11,37 @@ Bert as Service是基于Paddle Serving框架的快速部署模型远程计算服
</div>
### 1.3 为什么使用Bert as Service
*
算力有限的集群环境中,可利用一台或几台高性能机器部署
`Bert as Service`
服务端,为全部机器提供在线embedding功能。
### 1.2 为什么使用Bert Service
*
算力有限的集群环境中,可利用一台或几台高性能机器部署
`Bert Service`
服务端,为全部机器提供在线embedding功能。
*
实际的生产服务器不适宜承担大批量embedding工作,通过API接口可减少资源占用。
*
专注下游深度学习任务,可利用PaddleHub的
`Bert as Service`
大幅减少embedding代码。
*
专注下游深度学习任务,可利用PaddleHub的
`Bert Service`
大幅减少embedding代码。
`Bert as Service`
具有几个突出的优点:
*
代码精短,易于使用。简单的pip安装方式,服务端仅需一行命令即可启动,客户端仅需一行代码即可获取embedding结果。
*
更高性能,更高效率。通过Paddle AnalysisPredictor API对模型的计算图进行优化,提升了计算速度并减小了显存占用,性能数据可参照
[
`Bert as Service`性能数据
](
https://github.com/ShenYuhan/PaddleHub/tree/bert_service/demo/serving/bert_as_service#7-%E6%80%A7%E8%83%BD
)
。
*
更高性能,更高效率。通过Paddle AnalysisPredictor API对模型的计算图进行优化,提升了计算速度并减小了显存占用。
*
随"机"应变,灵活扩展。可根据机器资源选择不同数量的服务端,并根据实际需求快速、灵活地进行增减,同时支持各张显卡执行不同的模型计算任务。
*
删繁就简,专注任务。
`Bert as Service`
基于PaddlePaddle和PaddleHub开发,将模型的下载和安装等管理工作交由PaddleHub,开发者可以专注于主要任务,且可无缝对接PaddleHub继续进行文本分类、序列标注等下游任务。
*
删繁就简,专注任务。
`Bert Service`
基于PaddlePaddle和PaddleHub开发,将模型的下载和安装等管理工作交由PaddleHub,开发者可以专注于主要任务,还可以无缝对接PaddleHub继续进行文本分类、序列标注等下游任务。
## 2. 环境准备
### 2.1 环境要求
下表是使用
`Bert
as
Service`
的环境要求,带有
*
号标志项为非必需依赖,可根据实际使用需求选择安装。
下表是使用
`Bert Service`
的环境要求,带有
*
号标志项为非必需依赖,可根据实际使用需求选择安装。
|项目|版本|说明|
|:-:|:-:|:-:|
|操作系统|Linux|目前仅支持Linux操作系统|
|PaddleHub|>=1.
3
.0|无|
|PaddlePaddle|>=1.6.
0
|若使用GPU计算,则对应使用PaddlePaddle-gpu版本|
|PaddleHub|>=1.
4
.0|无|
|PaddlePaddle|>=1.6.
1
|若使用GPU计算,则对应使用PaddlePaddle-gpu版本|
|GCC|>=4.8|无|
|CUDA
*
|>=8|若使用GPU,需使用CUDA8以上版本|
|paddle-gpu-serving
*
|>=0.
6.4|在
`Bert as
Service`
服务端需依赖此包|
|ujson
*
|>=1.35|在
Bert as Service
客户端需依赖此包|
|paddle-gpu-serving
*
|>=0.
8.0|在
`Bert
Service`
服务端需依赖此包|
|ujson
*
|>=1.35|在
`Bert Service`
客户端需依赖此包|
### 2.2 安装步骤
a) 安装PaddlePaddle,利用pip下载CPU版本命令如下。GPU版本、Docker方式安装等其他更具体的安装过程见
[
开始使用PaddlePaddle
](
https://paddlepaddle.org.cn/install/quick
)
...
...
@@ -60,20 +64,23 @@ $ pip install ujson
## 3. 支持模型
目前
`Bert as Service`
支持的语义模型如下表,可根据需要选择模型进行部署embedding服务,未来还将支持更多模型。
|模型|网络|数据集|
|:-|:-:|:-|
|
[
ERNIE
](
https://paddlepaddle.org.cn/hubdetail?name=ERNIE&en_category=SemanticModel
)
|ERNIE|百科类、资讯类、论坛对话类数据等中文语料|
|
[
roberta_wwm_ext_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=roberta_wwm_ext_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|中文维基百科、百科、新闻、问答等|
|
[
roberta_wwm_ext_chinese_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=roberta_wwm_ext_chinese_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|中文维基百科、百科、新闻、问答等|
|
[
bert_wwm_ext_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_wwm_ext_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|中文维基百科、百科、新闻、问答等|
|
[
bert_uncased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_uncased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|英文维基百科|
|
[
bert_uncased_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=bert_uncased_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|英文维基百科|
|
[
bert_cased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_cased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|英文维基百科|
|
[
bert_cased_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=bert_cased_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|英文维基百科|
|
[
bert_multi_cased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_multi_cased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|英文维基百科|
|
[
bert_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|中文维基百科|
目前
`Bert Service`
支持的语义模型如下表,可根据需要选择模型进行部署embedding服务,未来还将支持更多模型。
|模型|网络|
|:-|:-:|
|
[
ERNIE
](
https://paddlepaddle.org.cn/hubdetail?name=ERNIE&en_category=SemanticModel
)
|ERNIE|
|
[
ernie_tiny
](
https://paddlepaddle.org.cn/hubdetail?name=ernie_tiny&en_category=SemanticModel
)
|ERNIE|
|
[
ernie_v2_eng_large
](
https://paddlepaddle.org.cn/hubdetail?name=ernie_v2_eng_large&en_category=SemanticModel
)
|ERNIE|
|
[
ernie_v2_eng_base
](
https://paddlepaddle.org.cn/hubdetail?name=ernie_v2_eng_base&en_category=SemanticModel
)
|ERNIE|
|
[
roberta_wwm_ext_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=roberta_wwm_ext_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
|
[
roberta_wwm_ext_chinese_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=roberta_wwm_ext_chinese_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|
|
[
bert_wwm_ext_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_wwm_ext_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
|
[
bert_uncased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_uncased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
|
[
bert_uncased_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=bert_uncased_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|
|
[
bert_cased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_cased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
|
[
bert_cased_L-24_H-1024_A-16
](
https://paddlepaddle.org.cn/hubdetail?name=bert_cased_L-24_H-1024_A-16&en_category=SemanticModel
)
|BERT|
|
[
bert_multi_cased_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_multi_cased_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
|
[
bert_chinese_L-12_H-768_A-12
](
https://paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel
)
|BERT|
## 4. 服务端(server)
...
...
@@ -83,9 +90,9 @@ server端接收client端发送的数据,执行模型计算过程并将计算
server端启动时会按照指定的模型名称从PaddleHub获取对应的模型文件进行加载,无需提前下载模型或指定模型路径,对模型的管理工作由PaddleHub负责。在加载模型后在指定的端口启动
`BRPC`
服务,保持端口监听,当接收到数据后便执行模型计算,并将计算结果通过
`BRPC`
返回并发送至client端。
### 4.2 启动
使用PaddleHub的命令行工具可一键启动
`Bert
as
Service`
,命令如下:
使用PaddleHub的命令行工具可一键启动
`Bert Service`
,命令如下:
```
shell
$
hub serving start bert_servi
ng
-m
bert_chinese_L-12_H-768_A-12
-p
8866
--use_gpu
--gpu
0
$
hub serving start bert_servi
ce
-m
ernie_tiny
-p
8866
--use_gpu
--gpu
0
```
启动成功则显示
```
shell
...
...
@@ -107,7 +114,7 @@ Server[baidu::paddle_serving::predictor::bert_service::BertServiceImpl] is servi
|参数|说明|是否必填|
|:--:|:--:|:----:|
|hub serving start bert_servi
ng|启动
`Bert as
Service`
服务端。|必填项|
|hub serving start bert_servi
ce|启动
`Bert
Service`
服务端。|必填项|
|--module/-m|指定启动的模型,如果指定的模型不存在,则自动通过PaddleHub下载指定模型。|必填项|
|--port/-p|指定启动的端口,每个端口对应一个模型,可基于不同端口进行多次启动,以实现多个模型的服务部署。|必填项|
|--use_gpu|若指定此项则使用GPU进行工作,反之仅使用CPU。注意需安装GPU版本的PaddlePaddle。|非必填项,默认为不指定|
...
...
@@ -116,7 +123,7 @@ Server[baidu::paddle_serving::predictor::bert_service::BertServiceImpl] is servi
</div>
### 4.3 关闭
通过在启动服务端的命令行页面使用Ctrl+C终止
`Bert
as
Service`
运行,关闭成功则显示:
通过在启动服务端的命令行页面使用Ctrl+C终止
`Bert Service`
运行,关闭成功则显示:
```
shell
Paddle Inference Server
exit
successfully!
```
...
...
@@ -133,7 +140,6 @@ client端利用PaddleHub的语义理解任务将原始文本按照不同模型
def
connect
(
input_text
,
model_name
,
max_seq_len
=
128
,
emb_size
=
768
,
show_ids
=
False
,
do_lower_case
=
True
,
server
=
"127.0.0.1:8866"
,
...
...
@@ -147,7 +153,6 @@ def connect(input_text,
|input_text|输入文本,要获取embedding的原始文本|二维list类型,内部元素为string类型的文本|[['样例1'],['样例2']]|
|model_name|指定使用的模型名称|string|"ernie"|
|max_seq_len|计算时的样例长度,样例长度不足时采用补零策略,超出此参数则超出部分会被截断|int|128|
|emb_size|返回的embedding数据长度,需要与模型计算的embedding长度相等|int|768|
|show_ids|是否展现数据预处理后的样例信息,指定为True则显示样例信息,反之则不显示|bool|False|
|do_lower_case|是否将英文字母转换成小写,指定为True则将所有英文字母转换为小写,反之则保持原状|bool|True|
|server|要访问的server地址,包括ip地址及端口号|string|"127.0.0.1:8866"|
...
...
@@ -155,22 +160,23 @@ def connect(input_text,
## 6. Demo
在这里,我们将展示一个实际场景中可能使用的demo,我们利用PaddleHub在一台GPU机器上部署
`
bert_wwm_ext_chinese_L-12_H-768_A-12
`
模型服务,并在另一台CPU机器上尝试访问,获取一首七言绝句的embedding。
在这里,我们将展示一个实际场景中可能使用的demo,我们利用PaddleHub在一台GPU机器上部署
`
ernie_tiny
`
模型服务,并在另一台CPU机器上尝试访问,获取一首七言绝句的embedding。
### 6.1 安装环境依赖
首先需要安装环境依赖,根据第2节内容分别在两台机器上安装相应依赖。
### 6.2 启动
`Bert as Serving`
服务端
确保环境依赖安装正确后,在要部署服务的GPU机器上使用PaddleHub命令行工具启动
`Bert
as
Service`
服务端,命令如下:
### 6.2 启动
Bert Service
服务端
确保环境依赖安装正确后,在要部署服务的GPU机器上使用PaddleHub命令行工具启动
`Bert Service`
服务端,命令如下:
```
shell
$
hub serving start bert_servi
ng
-m
bert_chinese_L-12_H-768_A-12
--use_gpu
--gpu
0
--port
8866
$
hub serving start bert_servi
ce
-m
ernie_tiny
--use_gpu
--gpu
0
--port
8866
```
启动成功后打印
```
shell
Server[baidu::paddle_serving::predictor::bert_service::BertServiceImpl] is serving on
port
=
8866.
```
这样就启动了
`
bert_chinese_L-12_H-768_A-12
`
的在线服务,监听8866端口,并在0号GPU上进行任务。
### 6.3 使用
`Bert as Serving`
客户端进行远程调用
这样就启动了
`
ernie_tiny
`
的在线服务,监听8866端口,并在0号GPU上进行任务。
### 6.3 使用
Bert Service
客户端进行远程调用
部署好服务端后,就可以用普通机器作为客户端测试在线embedding功能。
首先导入客户端依赖。
```
python
from
paddlehub.serving.bert_serving
import
bert_service
...
...
@@ -183,17 +189,17 @@ input_text = [["西风吹老洞庭波"], ["一夜湘君白发多"], ["醉后不
```
python
result
=
bert_service
.
connect
(
input_text
=
input_text
,
model_name
=
"
bert_chinese_L-12_H-768_A-12
"
,
model_name
=
"
ernie_tiny
"
,
server
=
"127.0.0.1:8866"
)
```
最后即可得到embedding结果(此处只展示部分结果)。
```
python
[[
0.9993321895599361
,
0.9994612336158751
,
0.9999646544456481
,
0.732795298099517
,
-
0.34387934207916204
,
...
]]
```
客户端代码demo文件见
[
示例
](
./bert_as
_service_client.py
)
。
客户端代码demo文件见
[
示例
](
bert
_service_client.py
)
。
运行命令如下:
```
shell
$
python bert_
as_service
.py
$
python bert_
service_client
.py
```
运行过程如下图:
...
...
@@ -204,41 +210,16 @@ $ python bert_as_service.py
</div>
### 6.4 关闭Bert
as Serving
服务端
如要停止
`Bert
as Serving
`
服务端程序,可在其启动命令行页面使用Ctrl+C方式关闭,关闭成功会打印如下日志:
### 6.4 关闭Bert
Service
服务端
如要停止
`Bert
Service
`
服务端程序,可在其启动命令行页面使用Ctrl+C方式关闭,关闭成功会打印如下日志:
```
shell
Paddle Inference Server
exit
successfully!
```
这样,我们就利用一台GPU机器就完成了Bert as Service的部署,并利用另一台普通机器进行了测试,可见通过
`Bert as Service`
能够方便地进行在线embedding服务的快速部署。
## 7. 性能
测试环境:
PaddlePaddle:
PaddleHub:
paddle-gpu-serving: 0.7.X
GPU: k40
module: bert_chinese_L-12_H-768_A-12
max_seq_len: 128
batch: 1000
测试结果如下表(单位:秒):
|batch size|总时间|预处理时间|json序列化|连接http|发送request|client端等待|server端op耗时|读取http信息|json反序列化|qps|
|:-|:-|:-|:-|:-|:-|:-|:-|:-|:-|:-|
|1| 35.763| 2.281| 0.055| 0.022| 0.531| 29.614| 28.411| 0.078| 0.108| 27.96186|
|2| 58.793| 4.167| 0.101| 0.024| 0.533| 50.828| 48.793| 0.096| 0.201| 34.0176552|
|4| 83.653| 7.92| 0.18| 0.026| 0.528| 71.83| 69.605| 0.112| 0.416| 47.8165756|
|8| 153.168| 15.741| 0.337| 0.03| 0.558| 132.468| 129.014| 0.162| 0.819| 52.2302309|
|16| 293.131| 31.14| 0.662| 0.034| 0.612| 255.693| 249.737| 0.252| 1.598| 54.5831045|
|32| 595.6| 62.734| 1.315| 0.043| 0.712| 523.998| 513.075| 0.432| 3.196| 53.7273338|
|64| 1170.068| 125.199| 2.68| 0.056| 0.78| 1030.275| 1009.219| 0.95| 6.992| 54.6976757|
|128| 2326.037| 253.642| 5.263| 0.069| 1.028| 2042.25| 2002.016| 3.024| 14.112| 55.0292192|
|256|5147.78| 508.69| 10.619| 0.08| 1.181| 4586.019| 4505.11| 8.142| 29.378| 49.7301749|
## 8. FAQ
这样,我们就利用一台GPU机器就完成了
`Bert Service`
的部署,并利用另一台普通机器进行了测试,可见通过
`Bert Service`
能够方便地进行在线embedding服务的快速部署。
## 7. FAQ
> Q : 如何在一台服务器部署多个模型?
> A : 可通过多次启动`Bert
as
Service`,分配不同端口实现。如果使用GPU,需要指定不同的显卡。如同时部署`ernie`和`bert_chinese_L-12_H-768_A-12`,分别执行命令如下:
> A : 可通过多次启动`Bert Service`,分配不同端口实现。如果使用GPU,需要指定不同的显卡。如同时部署`ernie`和`bert_chinese_L-12_H-768_A-12`,分别执行命令如下:
> ```shell
> $ hub serving start bert_serving -m ernie -p 8866
> $ hub serving start bert_serving -m bert_serving -m bert_chinese_L-12_H-768_A-12 -p 8867
...
...
demo/serving/bert_
as_service/bert_as
_service_client.py
→
demo/serving/bert_
service/bert
_service_client.py
浏览文件 @
98e6c96d
...
...
@@ -12,9 +12,7 @@ if __name__ == "__main__":
]
# 调用客户端接口bert_service.connect()获取结果
result
=
bert_service
.
connect
(
input_text
=
input_text
,
model_name
=
"bert_chinese_L-12_H-768_A-12"
,
server
=
"127.0.0.1:8866"
)
input_text
=
input_text
,
model_name
=
"ernie_tiny"
,
server
=
"127.0.0.1:8866"
)
# 打印embedding结果
for
item
in
result
:
...
...
demo/serving/bert_
as_
service/img/bs.png
→
demo/serving/bert_service/img/bs.png
浏览文件 @
98e6c96d
文件已移动
paddlehub/commands/serving.py
浏览文件 @
98e6c96d
...
...
@@ -181,8 +181,8 @@ class ServingCommand(BaseCommand):
str
+=
"sub command:
\n
"
str
+=
"start
\n
"
str
+=
"
\t
Start PaddleHub-Serving if specifies this parameter.
\n
"
str
+=
"start bert_servi
ng
\n
"
str
+=
"
\t
Start Bert
as
Service if specifies this parameter.
\n
"
str
+=
"start bert_servi
ce
\n
"
str
+=
"
\t
Start Bert Service if specifies this parameter.
\n
"
str
+=
"option:
\n
"
str
+=
"--modules/-m [module1==version, module2==version...]
\n
"
str
+=
"
\t
Pre-install modules via this parameter list.
\n
"
...
...
@@ -204,7 +204,7 @@ class ServingCommand(BaseCommand):
ServingCommand
.
show_help
()
return
False
if
args
.
sub_command
==
"start"
:
if
args
.
bert_service
==
"bert_servi
ng
"
:
if
args
.
bert_service
==
"bert_servi
ce
"
:
ServingCommand
.
start_bert_serving
(
args
)
else
:
ServingCommand
.
start_serving
(
args
)
...
...
paddlehub/common/logger.py
浏览文件 @
98e6c96d
paddlehub/serving/bert_serving/bert_service.py
浏览文件 @
98e6c96d
...
...
@@ -20,18 +20,21 @@ import ujson
import
random
from
paddlehub.common.logger
import
logger
if
sys
.
version_info
[
0
]
==
2
:
_ver
=
sys
.
version_info
is_py2
=
(
_ver
[
0
]
==
2
)
is_py3
=
(
_ver
[
0
]
==
3
)
if
is_py2
:
import
httplib
else
:
if
is_py3
:
import
http.client
as
httplib
class
BertService
(
object
):
class
BertService
():
def
__init__
(
self
,
profile
=
False
,
max_seq_len
=
128
,
model_name
=
"bert_uncased_L-12_H-768_A-12"
,
emb_size
=
768
,
show_ids
=
False
,
do_lower_case
=
True
,
process_id
=
0
,
...
...
@@ -40,7 +43,6 @@ class BertService(object):
self
.
process_id
=
process_id
self
.
reader_flag
=
False
self
.
batch_size
=
16
self
.
embedding_size
=
emb_size
self
.
max_seq_len
=
max_seq_len
self
.
profile
=
profile
self
.
model_name
=
model_name
...
...
@@ -53,7 +55,7 @@ class BertService(object):
self
.
feed_var_names
=
''
self
.
retry
=
retry
def
connect
(
self
,
server
=
'127.0.0.1:8
866
'
):
def
connect
(
self
,
server
=
'127.0.0.1:8
010
'
):
self
.
server_list
.
append
(
server
)
def
connect_all_server
(
self
,
server_list
):
...
...
@@ -64,7 +66,7 @@ class BertService(object):
if
self
.
reader_flag
==
False
:
module
=
hub
.
Module
(
name
=
self
.
model_name
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
128
)
trainable
=
True
,
max_seq_len
=
self
.
max_seq_len
)
input_ids
=
inputs
[
"input_ids"
]
position_ids
=
inputs
[
"position_ids"
]
segment_ids
=
inputs
[
"segment_ids"
]
...
...
@@ -131,6 +133,7 @@ class BertService(object):
return
'retry'
elif
self
.
load_balance
==
'bind'
:
try
:
self
.
con_index
=
int
(
self
.
process_id
)
%
len
(
self
.
server_list
)
cur_con
=
httplib
.
HTTPConnection
(
...
...
@@ -184,7 +187,6 @@ class BertService(object):
copy_time
=
time
.
time
()
-
copy_start
request
=
{
"instances"
:
request
}
request
[
"max_seq_len"
]
=
self
.
max_seq_len
request
[
"emb_size"
]
=
self
.
embedding_size
request
[
"feed_var_names"
]
=
self
.
feed_var_names
request_msg
=
ujson
.
dumps
(
request
)
if
self
.
show_ids
:
...
...
@@ -219,7 +221,6 @@ class BertService(object):
def
connect
(
input_text
,
model_name
,
max_seq_len
=
128
,
emb_size
=
768
,
show_ids
=
False
,
do_lower_case
=
True
,
server
=
"127.0.0.1:8866"
,
...
...
@@ -228,7 +229,6 @@ def connect(input_text,
bc
=
BertService
(
max_seq_len
=
max_seq_len
,
model_name
=
model_name
,
emb_size
=
emb_size
,
show_ids
=
show_ids
,
do_lower_case
=
do_lower_case
,
retry
=
retry
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录