diff --git a/modules/image/classification/resnet50_vd_10w/README_en.md b/modules/image/classification/resnet50_vd_10w/README_en.md
index 51bef67641d771eeabaf48c6d2aaee513f488ba0..2f7bbb8c1f2e4d94fbcfb56bf2284c7a7179f643 100644
--- a/modules/image/classification/resnet50_vd_10w/README_en.md
+++ b/modules/image/classification/resnet50_vd_10w/README_en.md
@@ -54,15 +54,15 @@
def context(trainable=True, pretrained=True)
```
- **Parameters**
- - trainable (bool): 计算图的Parameters是否为可训练的;
- - pretrained (bool): 是否加载默认的预训练模型.
+ - trainable (bool): whether parameters are trainable;
+ - pretrained (bool): whether load the pre-trained model.
- **Return**
- - inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
- - outputs (dict): 计算图的输出,key 为 'classification' 和 'feature_map',其相应的值为:
- - classification (paddle.fluid.framework.Variable): 分类结果,也就是全连接层的输出;
- - feature\_map (paddle.fluid.framework.Variable): 特征匹配,全连接层前面的那个张量.
- - context\_prog(fluid.Program): 计算图,用于迁移学习.
+ - inputs (dict): model inputs,key is 'image', value is the image tensor;
+ - outputs (dict): model outputs,key is 'classification' and 'feature_map',values:
+ - classification (paddle.fluid.framework.Variable): classification result;
+ - feature\_map (paddle.fluid.framework.Variable): feature map extracted by model.
+ - context\_prog(fluid.Program): computation graph, used for transfer learning.
@@ -73,9 +73,9 @@
combined=True)
```
- **Parameters**
- - dirname: output dir for saving model
- - model_filename: 模型文件名称,默认为\_\_model\_\_;
- - params_filename: Parameters文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效);
+ - dirname: output dir for saving model;
+ - model_filename: filename of model, default is \_\_model\_\_;
+ - params_filename: filename of parameters,default is \_\_params\_\_(only effective when `combined` is True);
- combined: whether save parameters into one file
diff --git a/modules/image/classification/se_resnet18_vd_imagenet/README_en.md b/modules/image/classification/se_resnet18_vd_imagenet/README_en.md
deleted file mode 100644
index a2a4b1d8f0ccdaa56f03fe949ad796b8827556d9..0000000000000000000000000000000000000000
--- a/modules/image/classification/se_resnet18_vd_imagenet/README_en.md
+++ /dev/null
@@ -1,149 +0,0 @@
-## 命令行预测
-
-```
-hub run se_resnet18_vd_imagenet --input_path "/PATH/TO/IMAGE"
-```
-
-## API
-
-```python
-def get_expected_image_width()
-```
-
-返回预处理的图片宽度,也就是224。
-
-```python
-def get_expected_image_height()
-```
-
-返回预处理的图片高度,也就是224。
-
-```python
-def get_pretrained_images_mean()
-```
-
-返回预处理的图片均值,也就是 \[0.485, 0.456, 0.406\]。
-
-```python
-def get_pretrained_images_std()
-```
-
-返回预处理的图片标准差,也就是 \[0.229, 0.224, 0.225\]。
-
-
-```python
-def context(trainable=True, pretrained=True)
-```
-
-**参数**
-
-* trainable (bool): 计算图的参数是否为可训练的;
-* pretrained (bool): 是否加载默认的预训练模型。
-
-**返回**
-
-* inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
-* outputs (dict): 计算图的输出,key 为 'classification' 和 'feature_map',其相应的值为:
- * classification (paddle.fluid.framework.Variable): 分类结果,也就是全连接层的输出;
- * feature\_map (paddle.fluid.framework.Variable): 特征匹配,全连接层前面的那个张量。
-* context\_prog(fluid.Program): 计算图,用于迁移学习。
-
-```python
-def classification(images=None,
- paths=None,
- batch_size=1,
- use_gpu=False,
- top_k=1):
-```
-
-**参数**
-
-* images (list\[numpy.ndarray\]): 图片数据,每一个图片数据的shape 均为 \[H, W, C\],颜色空间为 BGR;
-* paths (list\[str\]): 图片的路径;
-* batch\_size (int): batch 的大小;
-* use\_gpu (bool): 是否使用 GPU 来预测;
-* top\_k (int): 返回预测结果的前 k 个。
-
-**返回**
-
-res (list\[dict\]): 分类结果,列表的每一个元素均为字典,其中 key 为识别动物的类别,value为置信度。
-
-```python
-def save_inference_model(dirname,
- model_filename=None,
- params_filename=None,
- combined=True)
-```
-
-将模型保存到指定路径。
-
-**参数**
-
-* dirname: 存在模型的目录名称
-* model\_filename: 模型文件名称,默认为\_\_model\_\_
-* params\_filename: 参数文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效)
-* combined: 是否将参数保存到统一的一个文件中
-
-## 预测代码示例
-
-```python
-import paddlehub as hub
-import cv2
-
-classifier = hub.Module(name="se_resnet18_vd_imagenet")
-
-result = classifier.classification(images=[cv2.imread('/PATH/TO/IMAGE')])
-# or
-# result = classifier.classification(paths=['/PATH/TO/IMAGE'])
-```
-
-## Server Deployment
-
-PaddleHub Serving可以部署一个在线图像识别服务。
-
-## 第一步:启动PaddleHub Serving
-
-运行启动命令:
-```shell
-$ hub serving start -m se_resnet18_vd_imagenet
-```
-
-这样就完成了一个在线图像识别服务化API的部署,默认端口号为8866。
-
-**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
-
-## 第二步:发送预测请求
-
-配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
-```python
-import requests
-import json
-import cv2
-import base64
-
-
-def cv2_to_base64(image):
- data = cv2.imencode('.jpg', image)[1]
- return base64.b64encode(data.tostring()).decode('utf8')
-
-
-# Send an HTTP request
-data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
-headers = {"Content-type": "application/json"}
-url = "http://127.0.0.1:8866/predict/se_resnet18_vd_imagenet"
-r = requests.post(url=url, headers=headers, data=json.dumps(data))
-
-# print prediction results
-print(r.json()["results"])
-```
-
-### 查看代码
-
-https://github.com/PaddlePaddle/PaddleClas
-
-### 依赖
-
-paddlepaddle >= 1.6.2
-
-paddlehub >= 1.6.0