diff --git a/modules/image/classification/DriverStatusRecognition/README_en.md b/modules/image/classification/DriverStatusRecognition/README_en.md index cbf998ead76d5b6c7ba29946f7613e5b664bfbcb..1a05edb3421dbe6be9d51180d4ec4d71a62bd26b 100644 --- a/modules/image/classification/DriverStatusRecognition/README_en.md +++ b/modules/image/classification/DriverStatusRecognition/README_en.md @@ -4,7 +4,7 @@ | :--- | :---: | |Category|image classification| |Network|MobileNetV3_small_ssld| -|Dataset|分心司机检测Dataset| +|Dataset|Distractible Driver Dataset| |Fine-tuning supported or not|No| |Module Size|6MB| |Latest update date|-| @@ -17,7 +17,7 @@ - ### Module Introduction - - 驾驶员状态识别(DriverStatusRecognition),该模型可挖掘出人在疲劳状态下的表情特征,然后将这些定性的表情特征进行量化,提取出面部特征点及特征指标作为判断依据,再结合实验数据总结出基于这些Parameters的识别方法,最后输入获取到的状态数据进行识别和判断.该PaddleHub Module支持API预测及命令行预测. + - This module can be used for recognizing distractible drivers by analysing the expression on the face. ## II.Installation @@ -37,8 +37,8 @@ ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() -- ### 3、在线体验 - [AI Studio 快速体验](https://aistudio.baidu.com/aistudio/projectdetail/1649513) +- ### 3、Online experience + [AI Studio](https://aistudio.baidu.com/aistudio/projectdetail/1649513) ## III.Module API Prediction @@ -69,7 +69,7 @@ ``` - classification API. - **Parameters** - - images:list类型,待检测的图像. + - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability diff --git a/modules/image/classification/SnakeIdentification/README_en.md b/modules/image/classification/SnakeIdentification/README_en.md index 829f83d3be162a7547e43049bf47218e6ceed8be..d80db28647ccdc4a3f08f9abd6646a70e4125758 100644 --- a/modules/image/classification/SnakeIdentification/README_en.md +++ b/modules/image/classification/SnakeIdentification/README_en.md @@ -4,7 +4,7 @@ | :--- | :---: | |Category|image classification| |Network|ResNet50_vd_ssld| -|Dataset|蛇种Dataset| +|Dataset|Snake Dataset| |Fine-tuning supported or not|No| |Module Size|84MB| |Latest update date|-| @@ -17,7 +17,7 @@ - ### Module Introduction - - 蛇种识别(SnakeIdentification),该模型可准确识别蛇的种类,并精准判断蛇的毒性.该PaddleHub Module支持API预测及命令行预测. + - This module can be used to identify the kind of snake, and judge the toxicity. ## II.Installation @@ -37,8 +37,8 @@ ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() -- ### 3、在线体验 - [AI Studio 快速体验](https://aistudio.baidu.com/aistudio/projectdetail/1646951) +- ### 3、Online experience + [AI Studio](https://aistudio.baidu.com/aistudio/projectdetail/1646951) ## III.Module API Prediction @@ -69,7 +69,7 @@ ``` - classification API. - **Parameters** - - images:list类型,待检测的图像. + - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability diff --git a/modules/image/classification/alexnet_imagenet/README_en.md b/modules/image/classification/alexnet_imagenet/README_en.md index e4f57cfeceed8c5bcea9d79cdb97e031435cb284..c964dc961f2e9dd5de01528bf4b9c63cf9583b12 100644 --- a/modules/image/classification/alexnet_imagenet/README_en.md +++ b/modules/image/classification/alexnet_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - AlexNet是图像分类中的经典模型.模型由Alex Krizhevsky于2012年提出,并在2012年ILSVRC比赛中夺得冠军.该PaddleHub Module结构为AlexNet,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - AlexNet was a classification model proposed by Alex Krizhevsky in 2012, and gained the champion of ILSVRC 2012. This module is based on AlexNet, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/darknet53_imagenet/README_en.md b/modules/image/classification/darknet53_imagenet/README_en.md index 3dea4b920e598deb82896800e2165bbcbbaf43a0..d348207e198f22d0cbdc3162ba88fae683f9a5f7 100644 --- a/modules/image/classification/darknet53_imagenet/README_en.md +++ b/modules/image/classification/darknet53_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DarkNet 是由 Joseph Redmon 提出的图像分类模型,并应用于Yolov3 中作为 Backbone 来完成特征提取.该网络采用连续的 3*3 和 1*1 卷积进行连接,并像ResNet 一样有ShortCut连接.该 PaddleHub Module 基于 ImageNet-2012 数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者 Python 接口进行预测. + - DarkNet is a classification model proposed by Joseph Redmon, which uses Yolov3 as backbone to extract features. This module is based on darknet53, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/densenet121_imagenet/README_en.md b/modules/image/classification/densenet121_imagenet/README_en.md index 8bf61900095f7ebf0b85187f4871ae977ac16c1b..40453f1d4e32630f91ab4c67d9a7e362861d42dc 100644 --- a/modules/image/classification/densenet121_imagenet/README_en.md +++ b/modules/image/classification/densenet121_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet121,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet121, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/densenet161_imagenet/README_en.md b/modules/image/classification/densenet161_imagenet/README_en.md index bac4c436ba8cf5568294bbf21a4706977e15f217..36907895c8e38f60770ce1df09e10322886e6df7 100644 --- a/modules/image/classification/densenet161_imagenet/README_en.md +++ b/modules/image/classification/densenet161_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet161,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet161, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/densenet169_imagenet/README_en.md b/modules/image/classification/densenet169_imagenet/README_en.md index 2acb3261992df4617a63c6ee57ef984416c274b1..6663f0e19d247baf4bc4116b7bd19196875e844e 100644 --- a/modules/image/classification/densenet169_imagenet/README_en.md +++ b/modules/image/classification/densenet169_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet169,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet169, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/densenet201_imagenet/README_en.md b/modules/image/classification/densenet201_imagenet/README_en.md index d460881a51cf105edaab7dd975d8aa654626a9f6..623f8e0157175687a686d61b4483c60f6a269282 100644 --- a/modules/image/classification/densenet201_imagenet/README_en.md +++ b/modules/image/classification/densenet201_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet201,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet201, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/densenet264_imagenet/README_en.md b/modules/image/classification/densenet264_imagenet/README_en.md index 7814db69259f40f568afc237b87f3994c0c35ddb..cd34997908da2a0c427802d712b7a9210708f91b 100644 --- a/modules/image/classification/densenet264_imagenet/README_en.md +++ b/modules/image/classification/densenet264_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet264,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet264, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/dpn107_imagenet/README_en.md b/modules/image/classification/dpn107_imagenet/README_en.md index 498dc84db8ab0c6489007b9971499b314d19284f..cc4362c106523dc0bb64cb7f627dab2c232a5cbd 100644 --- a/modules/image/classification/dpn107_imagenet/README_en.md +++ b/modules/image/classification/dpn107_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DPN(Dual Path Networks) 是 ImageNet 2017 目标定位冠军的图像分类模型,融合了 ResNet 和 DenseNet 的核心思想.该PaddleHub Module结构为 DPN107,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DPN(Dual Path Networks) is the champion of ILSVRC2017 in Object Localization Task. This module is based on DPN107, trained on ImageNet-2012, can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/dpn131_imagenet/README_en.md b/modules/image/classification/dpn131_imagenet/README_en.md index 2e6c7e777d6f3ab09fbb5f9dffef4aa0514f0e5f..6401b3fa5dbe82cccbd0d52ab70193669aae2cd8 100644 --- a/modules/image/classification/dpn131_imagenet/README_en.md +++ b/modules/image/classification/dpn131_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DPN(Dual Path Networks) 是 ImageNet 2017 目标定位冠军的图像分类模型,融合了 ResNet 和 DenseNet 的核心思想.该PaddleHub Module结构为 DPN98,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DPN(Dual Path Networks) is the champion of ILSVRC2017 in Object Localization Task. This module is based on DPN131, trained on ImageNet-2012, can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/dpn68_imagenet/README_en.md b/modules/image/classification/dpn68_imagenet/README_en.md index a09d1845b0c7bb341d6bad17d6b052f53ff00d31..b70055f52b58dc4a6887642364d4f10a24c14cac 100644 --- a/modules/image/classification/dpn68_imagenet/README_en.md +++ b/modules/image/classification/dpn68_imagenet/README_en.md @@ -17,8 +17,7 @@ - ### Module Introduction - - DPN(Dual Path Networks) 是 ImageNet 2017 目标定位冠军的图像分类模型,融合了 ResNet 和 DenseNet 的核心思想.该PaddleHub Module结构为 DPN68,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. - + - DPN(Dual Path Networks) is the champion of ILSVRC2017 in Object Localization Task. This module is based on DPN68, trained on ImageNet-2012, can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/dpn92_imagenet/README_en.md b/modules/image/classification/dpn92_imagenet/README_en.md index 138d6045bfe6b7fb8c0ae282faaa5e1f29f3497f..ba277a3b73a8b94c31329480a541b1c9acca1097 100644 --- a/modules/image/classification/dpn92_imagenet/README_en.md +++ b/modules/image/classification/dpn92_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DPN(Dual Path Networks) 是 ImageNet 2017 目标定位冠军的图像分类模型,融合了 ResNet 和 DenseNet 的核心思想.该PaddleHub Module结构为 DPN92,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DPN(Dual Path Networks) is the champion of ILSVRC2017 in Object Localization Task. This module is based on DPN92, trained on ImageNet-2012, can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/dpn98_imagenet/README_en.md b/modules/image/classification/dpn98_imagenet/README_en.md index fb777e83a46b0a2ddbf06ed8e061b6e801b877bb..6e12eff9543c0960242602ef07b34a6c4f9f4a96 100644 --- a/modules/image/classification/dpn98_imagenet/README_en.md +++ b/modules/image/classification/dpn98_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - DPN(Dual Path Networks) 是 ImageNet 2017 目标定位冠军的图像分类模型,融合了 ResNet 和 DenseNet 的核心思想.该PaddleHub Module结构为 DPN98,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - DPN(Dual Path Networks) is the champion of ILSVRC2017 in Object Localization Task. This module is based on DPN98, trained on ImageNet-2012, can predict an image of size 224*224*3. diff --git a/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/README_en.md b/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/README_en.md index e2ce336bdfe25682c8967912617fb32fe634bf30..4e632244709ba21e55272fa48dfbbe545e9ded0b 100644 --- a/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/README_en.md +++ b/modules/image/classification/fix_resnext101_32x48d_wsl_imagenet/README_en.md @@ -17,7 +17,8 @@ - ### Module Introduction - - ResNeXt 是由 UC San Diego 和 Facebook AI 研究所于2017年提出的图像分类模型,模型沿袭了 VGG/ResNets 的堆叠思想,并采用 split-transform-merge 策略来增加网络的分支数.该 PaddleHub Module 在包含数十亿张社交媒体图片的数据集上进行弱监督训练,并使用ImageNet-2012数据集finetune,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者 Python 接口进行预测. + - ResNeXt is proposed by UC San Diego and Facebook AI Research in 2017. This module is based on ResNeXt model. It is weak-supervised trained on billions of socail images, finetuned on ImageNet-2012 dataset, and can predict an image of size 224*224*3. + ## II.Installation @@ -45,7 +46,7 @@ ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) -- ### 2、预测Prediction Code Example +- ### 2、Prediction Code Example - ```python import paddlehub as hub diff --git a/modules/image/classification/food_classification/README_en.md b/modules/image/classification/food_classification/README_en.md index 867e34b48866be9220e0f4e4759e4a824cef9b51..c5c53f0337e0708512df4fe0c9e9c56eeda6087d 100644 --- a/modules/image/classification/food_classification/README_en.md +++ b/modules/image/classification/food_classification/README_en.md @@ -4,7 +4,7 @@ | :--- | :---: | |Category|image classification| |Network|ResNet50_vd_ssld| -|Dataset|美食Dataset| +|Dataset|Food Dataset| |Fine-tuning supported or not|No| |Module Size|91MB| |Latest update date|-| @@ -17,7 +17,7 @@ - ### Module Introduction - - 美食分类(food_classification),该模型可识别苹果派,小排骨,烤面包,牛肉馅饼,牛肉鞑靼.该PaddleHub Module支持API预测及命令行预测. + - This module can be used for food classification. ## II.Installation @@ -46,7 +46,7 @@ ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) -- ### 2、预测Prediction Code Example +- ### 2、Prediction Code Example - ```python import paddlehub as hub @@ -66,13 +66,13 @@ ``` - classification API. - **Parameters** - - images:list类型,待检测的图像. + - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability - - category_id (int): 类别的id; - - category(str): 类别; - - score(float): 准确率 + - category_id (int): category id; + - category(str): category name; + - score(float): probability diff --git a/modules/image/classification/googlenet_imagenet/README_en.md b/modules/image/classification/googlenet_imagenet/README_en.md index a201a30f2badffa20cbefe551420c8d4ec02529e..75bae1b3e84059efbfb867cb92f998a65ff60cc3 100644 --- a/modules/image/classification/googlenet_imagenet/README_en.md +++ b/modules/image/classification/googlenet_imagenet/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - GoogleNet是图像分类中的经典模型.由Christian Szegedy等人在2014年提出,并获得了2014年ILSVRC竞赛冠军.该PaddleHub Module结构为GoogleNet,基于ImageNet-2012数据集训练,接受输入图片大小为224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. + - GoogleNet was proposed by Christian Szegedy in 2014 and gained the champion of ILSVRC 2014. This module is based on GoogleNet, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/inception_v4_imagenet/README_en.md b/modules/image/classification/inception_v4_imagenet/README_en.md index 013b4def5ab0a6dfabbd48a0cca7aca3e3191dc8..4992c58301af3481b3e27bb1fc5ebb373e51d386 100644 --- a/modules/image/classification/inception_v4_imagenet/README_en.md +++ b/modules/image/classification/inception_v4_imagenet/README_en.md @@ -16,8 +16,7 @@ - ### Module Introduction - - - Inception 结构最初由 GoogLeNet 引入,因此 GoogLeNet 也被称为 Inception-v1,通过在 Inception-v1 的基础上引入Batch Normalization、分解、残差连接等技术,设计出了Inception-v4. + - Inception structure is first introduced in GoogLeNet, so GoogLeNet is named Inception-v1. Inception-v4 is an improvement on it, which takas advantage of sereral useful strategies such as batch normalization, residual learning. This module is based on Inception-v4, trained on ImageNet-2012, and can predict an image of size 224*224*3. ## II.Installation diff --git a/modules/image/classification/marine_biometrics/README_en.md b/modules/image/classification/marine_biometrics/README_en.md index 804e48b5d421e8b1dd892abe00c117ba885efabe..f2e2874e98f35bd6b3d8e24847d7c18ce99cabba 100644 --- a/modules/image/classification/marine_biometrics/README_en.md +++ b/modules/image/classification/marine_biometrics/README_en.md @@ -17,7 +17,7 @@ - ### Module Introduction - - 海洋生物识别(marine_biometrics),该模型可准确识别鱼的种类.该PaddleHub Module支持API预测及命令行预测. + - This module can be used to classify marine biometrics. ## II.Installation @@ -44,7 +44,7 @@ ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) -- ### 2、预测Prediction Code Example +- ### 2、Prediction Code Example - ```python import paddlehub as hub @@ -64,7 +64,7 @@ ``` - classification API. - **Parameters** - - images:list类型,待检测的图像. + - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability diff --git a/modules/image/classification/mobilenet_v2_animals/README_en.md b/modules/image/classification/mobilenet_v2_animals/README_en.md index 32eb5f64239d0031060c9cc4b906989d4ee90bae..ad4071de18b1642e1c04aac14b58c2f9601eb7aa 100644 --- a/modules/image/classification/mobilenet_v2_animals/README_en.md +++ b/modules/image/classification/mobilenet_v2_animals/README_en.md @@ -4,7 +4,7 @@ | :--- | :---: | |Category|image classification| |Network|MobileNet_v2| -|Dataset|百度自建动物Dataset| +|Dataset|Baidu Animal Dataset| |Fine-tuning supported or not|No| |Module Size|50MB| |Latest update date|-| @@ -17,7 +17,9 @@ - ### Module Introduction - - MobileNet V2 是一个轻量化的卷积神经网络,它在 MobileNet 的基础上,做了 Inverted Residuals 和 Linear bottlenecks 这两大改进.该 PaddleHub Module 是在百度自建动物数据集上训练得到的,可用于图像分类和特征提取,当前已支持7978种动物的分类识别.模型的详情可参考[论文](https://arxiv.org/pdf/1801.04381.pdf). + - MobileNet is a light-weight convolution network. This module is trained on Baidu animal dataset, and can classify 7978 kinds of animals. + - For more information, please refer to:[MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/pdf/1801.04381.pdf) + diff --git a/modules/image/classification/mobilenet_v2_dishes/README_en.md b/modules/image/classification/mobilenet_v2_dishes/README_en.md index 9cc797a0d98e1257e66dec47379801e8219111e8..e5c802e2b6f1467fe4040b4a96ace3a2c1723474 100644 --- a/modules/image/classification/mobilenet_v2_dishes/README_en.md +++ b/modules/image/classification/mobilenet_v2_dishes/README_en.md @@ -4,7 +4,7 @@ | :--- | :---: | |Category|image classification| |Network|MobileNet_v2| -|Dataset|百度自建菜品Dataset| +|Dataset|Baidu food Dataset| |Fine-tuning supported or not|No| |Module Size|52MB| |Latest update date|-| @@ -17,13 +17,13 @@ - ### Module Introduction - - MobileNet V2 是一个轻量化的卷积神经网络,它在 MobileNet 的基础上,做了 Inverted Residuals 和 Linear bottlenecks 这两大改进.该 PaddleHub Module 是在百度自建菜品数据集上训练得到的,可用于图像分类和特征提取,当前已支持8416种菜品的分类识别. + - MobileNet is a light-weight convolution network. This module is trained on Baidu food dataset, and can classify 8416 kinds of food.