Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
8d4fc055
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 2 年 前同步成功
通知
285
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d4fc055
编写于
12月 20, 2021
作者:
C
chenjian
提交者:
GitHub
12月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pixel2style2pixel module (#1734)
上级
e79e72aa
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
487 addition
and
0 deletion
+487
-0
modules/image/Image_gan/gan/pixel2style2pixel/README.md
modules/image/Image_gan/gan/pixel2style2pixel/README.md
+133
-0
modules/image/Image_gan/gan/pixel2style2pixel/model.py
modules/image/Image_gan/gan/pixel2style2pixel/model.py
+205
-0
modules/image/Image_gan/gan/pixel2style2pixel/module.py
modules/image/Image_gan/gan/pixel2style2pixel/module.py
+137
-0
modules/image/Image_gan/gan/pixel2style2pixel/requirements.txt
...es/image/Image_gan/gan/pixel2style2pixel/requirements.txt
+2
-0
modules/image/Image_gan/gan/pixel2style2pixel/util.py
modules/image/Image_gan/gan/pixel2style2pixel/util.py
+10
-0
未找到文件。
modules/image/Image_gan/gan/pixel2style2pixel/README.md
0 → 100644
浏览文件 @
8d4fc055
# pixel2style2pixel
|模型名称|pixel2style2pixel|
| :--- | :---: |
|类别|图像 - 图像生成|
|网络|Pixel2Style2Pixel|
|数据集|-|
|是否支持Fine-tuning|否|
|模型大小|1.7GB|
|最新更新日期|2021-12-14|
|数据指标|-|
## 一、模型基本信息
-
### 应用效果展示
-
样例结果示例:
<p
align=
"center"
>
<img
src=
"https://user-images.githubusercontent.com/22424850/146486444-63637926-4e46-4299-8905-d93f529d9d54.jpg"
width =
"40%"
hspace=
'10'
/>
<br
/>
输入图像
<br
/>
<img
src=
"https://user-images.githubusercontent.com/22424850/146486413-0447dcc8-80ac-4b2c-8a7a-69347d60a2c4.png"
width =
"40%"
hspace=
'10'
/>
<br
/>
输出图像
<br
/>
</p>
-
### 模型介绍
-
Pixel2Style2Pixel使用相当大的模型对图像进行编码,将图像编码到StyleGAN V2的风格向量空间中,使编码前的图像和解码后的图像具有强关联性。该模块应用于人脸转正任务。
## 二、安装
-
### 1、环境依赖
-
paddlepaddle >= 2.1.0
-
paddlehub >= 2.1.0 |
[
如何安装PaddleHub
](
../../../../docs/docs_ch/get_start/installation.rst
)
-
### 2、安装
-
```shell
$ hub install pixel2style2pixel
```
-
如您安装时遇到问题,可参考:
[
零基础windows安装
](
../../../../docs/docs_ch/get_start/windows_quickstart.md
)
|
[
零基础Linux安装
](
../../../../docs/docs_ch/get_start/linux_quickstart.md
)
|
[
零基础MacOS安装
](
../../../../docs/docs_ch/get_start/mac_quickstart.md
)
## 三、模型API预测
-
### 1、命令行预测
-
```shell
# Read from a file
$ hub run pixel2style2pixel --input_path "/PATH/TO/IMAGE"
```
-
通过命令行方式实现人脸转正模型的调用,更多请见
[
PaddleHub命令行指令
](
../../../../docs/docs_ch/tutorial/cmd_usage.rst
)
-
### 2、预测代码示例
-
```python
import paddlehub as hub
module = hub.Module(name="pixel2style2pixel")
input_path = ["/PATH/TO/IMAGE"]
# Read from a file
module.style_transfer(paths=input_path, output_dir='./transfer_result/', use_gpu=True)
```
-
### 3、API
-
```python
style_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True):
```
-
人脸转正生成API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];<br/>
- paths (list\[str\]): 图片的路径;<br/>
- output\_dir (str): 结果保存的路径; <br/>
- use\_gpu (bool): 是否使用 GPU;<br/>
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
-
PaddleHub Serving可以部署一个在线人脸转正服务。
-
### 第一步:启动PaddleHub Serving
-
运行启动命令:
-
```shell
$ hub serving start -m pixel2style2pixel
```
-
这样就完成了一个人脸转正的在线服务API的部署,默认端口号为8866。
-
**NOTE:**
如使用GPU预测,则需要在启动服务之前,请设置CUDA
\_
VISIBLE
\_
DEVICES环境变量,否则不用设置。
-
### 第二步:发送预测请求
-
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
-
```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/pixel2style2pixel"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
## 五、更新历史
* 1.0.0
初始发布
- ```
shell
$ hub install pixel2style2pixel==1.0.0
```
modules/image/Image_gan/gan/pixel2style2pixel/model.py
0 → 100644
浏览文件 @
8d4fc055
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
cv2
import
scipy
import
random
import
numpy
as
np
import
paddle
import
paddle.vision.transforms
as
T
import
ppgan.faceutils
as
futils
from
ppgan.models.generators
import
Pixel2Style2Pixel
from
ppgan.utils.download
import
get_path_from_url
from
PIL
import
Image
model_cfgs
=
{
'ffhq-inversion'
:
{
'model_urls'
:
'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-inversion.pdparams'
,
'transform'
:
T
.
Compose
([
T
.
Resize
((
256
,
256
)),
T
.
Transpose
(),
T
.
Normalize
([
127.5
,
127.5
,
127.5
],
[
127.5
,
127.5
,
127.5
])]),
'size'
:
1024
,
'style_dim'
:
512
,
'n_mlp'
:
8
,
'channel_multiplier'
:
2
},
'ffhq-toonify'
:
{
'model_urls'
:
'https://paddlegan.bj.bcebos.com/models/pSp-ffhq-toonify.pdparams'
,
'transform'
:
T
.
Compose
([
T
.
Resize
((
256
,
256
)),
T
.
Transpose
(),
T
.
Normalize
([
127.5
,
127.5
,
127.5
],
[
127.5
,
127.5
,
127.5
])]),
'size'
:
1024
,
'style_dim'
:
512
,
'n_mlp'
:
8
,
'channel_multiplier'
:
2
},
'default'
:
{
'transform'
:
T
.
Compose
([
T
.
Resize
((
256
,
256
)),
T
.
Transpose
(),
T
.
Normalize
([
127.5
,
127.5
,
127.5
],
[
127.5
,
127.5
,
127.5
])])
}
}
def
run_alignment
(
image
):
img
=
Image
.
fromarray
(
image
).
convert
(
"RGB"
)
face
=
futils
.
dlib
.
detect
(
img
)
if
not
face
:
raise
Exception
(
'Could not find a face in the given image.'
)
face_on_image
=
face
[
0
]
lm
=
futils
.
dlib
.
landmarks
(
img
,
face_on_image
)
lm
=
np
.
array
(
lm
)[:,
::
-
1
]
lm_eye_left
=
lm
[
36
:
42
]
lm_eye_right
=
lm
[
42
:
48
]
lm_mouth_outer
=
lm
[
48
:
60
]
output_size
=
1024
transform_size
=
4096
enable_padding
=
True
# Calculate auxiliary vectors.
eye_left
=
np
.
mean
(
lm_eye_left
,
axis
=
0
)
eye_right
=
np
.
mean
(
lm_eye_right
,
axis
=
0
)
eye_avg
=
(
eye_left
+
eye_right
)
*
0.5
eye_to_eye
=
eye_right
-
eye_left
mouth_left
=
lm_mouth_outer
[
0
]
mouth_right
=
lm_mouth_outer
[
6
]
mouth_avg
=
(
mouth_left
+
mouth_right
)
*
0.5
eye_to_mouth
=
mouth_avg
-
eye_avg
# Choose oriented crop rectangle.
x
=
eye_to_eye
-
np
.
flipud
(
eye_to_mouth
)
*
[
-
1
,
1
]
x
/=
np
.
hypot
(
*
x
)
x
*=
max
(
np
.
hypot
(
*
eye_to_eye
)
*
2.0
,
np
.
hypot
(
*
eye_to_mouth
)
*
1.8
)
y
=
np
.
flipud
(
x
)
*
[
-
1
,
1
]
c
=
eye_avg
+
eye_to_mouth
*
0.1
quad
=
np
.
stack
([
c
-
x
-
y
,
c
-
x
+
y
,
c
+
x
+
y
,
c
+
x
-
y
])
qsize
=
np
.
hypot
(
*
x
)
*
2
# Shrink.
shrink
=
int
(
np
.
floor
(
qsize
/
output_size
*
0.5
))
if
shrink
>
1
:
rsize
=
(
int
(
np
.
rint
(
float
(
img
.
size
[
0
])
/
shrink
)),
int
(
np
.
rint
(
float
(
img
.
size
[
1
])
/
shrink
)))
img
=
img
.
resize
(
rsize
,
Image
.
ANTIALIAS
)
quad
/=
shrink
qsize
/=
shrink
# Crop.
border
=
max
(
int
(
np
.
rint
(
qsize
*
0.1
)),
3
)
crop
=
(
int
(
np
.
floor
(
min
(
quad
[:,
0
]))),
int
(
np
.
floor
(
min
(
quad
[:,
1
]))),
int
(
np
.
ceil
(
max
(
quad
[:,
0
]))),
int
(
np
.
ceil
(
max
(
quad
[:,
1
]))))
crop
=
(
max
(
crop
[
0
]
-
border
,
0
),
max
(
crop
[
1
]
-
border
,
0
),
min
(
crop
[
2
]
+
border
,
img
.
size
[
0
]),
min
(
crop
[
3
]
+
border
,
img
.
size
[
1
]))
if
crop
[
2
]
-
crop
[
0
]
<
img
.
size
[
0
]
or
crop
[
3
]
-
crop
[
1
]
<
img
.
size
[
1
]:
img
=
img
.
crop
(
crop
)
quad
-=
crop
[
0
:
2
]
# Pad.
pad
=
(
int
(
np
.
floor
(
min
(
quad
[:,
0
]))),
int
(
np
.
floor
(
min
(
quad
[:,
1
]))),
int
(
np
.
ceil
(
max
(
quad
[:,
0
]))),
int
(
np
.
ceil
(
max
(
quad
[:,
1
]))))
pad
=
(
max
(
-
pad
[
0
]
+
border
,
0
),
max
(
-
pad
[
1
]
+
border
,
0
),
max
(
pad
[
2
]
-
img
.
size
[
0
]
+
border
,
0
),
max
(
pad
[
3
]
-
img
.
size
[
1
]
+
border
,
0
))
if
enable_padding
and
max
(
pad
)
>
border
-
4
:
pad
=
np
.
maximum
(
pad
,
int
(
np
.
rint
(
qsize
*
0.3
)))
img
=
np
.
pad
(
np
.
float32
(
img
),
((
pad
[
1
],
pad
[
3
]),
(
pad
[
0
],
pad
[
2
]),
(
0
,
0
)),
'reflect'
)
h
,
w
,
_
=
img
.
shape
y
,
x
,
_
=
np
.
ogrid
[:
h
,
:
w
,
:
1
]
mask
=
np
.
maximum
(
1.0
-
np
.
minimum
(
np
.
float32
(
x
)
/
pad
[
0
],
np
.
float32
(
w
-
1
-
x
)
/
pad
[
2
]),
1.0
-
np
.
minimum
(
np
.
float32
(
y
)
/
pad
[
1
],
np
.
float32
(
h
-
1
-
y
)
/
pad
[
3
]))
blur
=
qsize
*
0.02
img
+=
(
scipy
.
ndimage
.
gaussian_filter
(
img
,
[
blur
,
blur
,
0
])
-
img
)
*
np
.
clip
(
mask
*
3.0
+
1.0
,
0.0
,
1.0
)
img
+=
(
np
.
median
(
img
,
axis
=
(
0
,
1
))
-
img
)
*
np
.
clip
(
mask
,
0.0
,
1.0
)
img
=
Image
.
fromarray
(
np
.
uint8
(
np
.
clip
(
np
.
rint
(
img
),
0
,
255
)),
'RGB'
)
quad
+=
pad
[:
2
]
# Transform.
img
=
img
.
transform
((
transform_size
,
transform_size
),
Image
.
QUAD
,
(
quad
+
0.5
).
flatten
(),
Image
.
BILINEAR
)
return
img
class
AttrDict
(
dict
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
AttrDict
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
__dict__
=
self
class
Pixel2Style2PixelPredictor
:
def
__init__
(
self
,
weight_path
=
None
,
model_type
=
None
,
seed
=
None
,
size
=
1024
,
style_dim
=
512
,
n_mlp
=
8
,
channel_multiplier
=
2
):
if
weight_path
is
None
and
model_type
!=
'default'
:
if
model_type
in
model_cfgs
.
keys
():
weight_path
=
get_path_from_url
(
model_cfgs
[
model_type
][
'model_urls'
])
size
=
model_cfgs
[
model_type
].
get
(
'size'
,
size
)
style_dim
=
model_cfgs
[
model_type
].
get
(
'style_dim'
,
style_dim
)
n_mlp
=
model_cfgs
[
model_type
].
get
(
'n_mlp'
,
n_mlp
)
channel_multiplier
=
model_cfgs
[
model_type
].
get
(
'channel_multiplier'
,
channel_multiplier
)
checkpoint
=
paddle
.
load
(
weight_path
)
else
:
raise
ValueError
(
'Predictor need a weight path or a pretrained model type'
)
else
:
checkpoint
=
paddle
.
load
(
weight_path
)
opts
=
checkpoint
.
pop
(
'opts'
)
opts
=
AttrDict
(
opts
)
opts
[
'size'
]
=
size
opts
[
'style_dim'
]
=
style_dim
opts
[
'n_mlp'
]
=
n_mlp
opts
[
'channel_multiplier'
]
=
channel_multiplier
self
.
generator
=
Pixel2Style2Pixel
(
opts
)
self
.
generator
.
set_state_dict
(
checkpoint
)
self
.
generator
.
eval
()
if
seed
is
not
None
:
paddle
.
seed
(
seed
)
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
self
.
model_type
=
'default'
if
model_type
is
None
else
model_type
def
run
(
self
,
image
):
src_img
=
run_alignment
(
image
)
src_img
=
np
.
asarray
(
src_img
)
transformed_image
=
model_cfgs
[
self
.
model_type
][
'transform'
](
src_img
)
dst_img
,
latents
=
self
.
generator
(
paddle
.
to_tensor
(
transformed_image
[
None
,
...]),
resize
=
False
,
return_latents
=
True
)
dst_img
=
(
dst_img
*
0.5
+
0.5
)[
0
].
numpy
()
*
255
dst_img
=
dst_img
.
transpose
((
1
,
2
,
0
))
dst_npy
=
latents
[
0
].
numpy
()
return
dst_img
,
dst_npy
modules/image/Image_gan/gan/pixel2style2pixel/module.py
0 → 100644
浏览文件 @
8d4fc055
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
import
copy
import
paddle
import
paddlehub
as
hub
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
import
numpy
as
np
import
cv2
from
skimage.io
import
imread
from
skimage.transform
import
rescale
,
resize
from
.model
import
Pixel2Style2PixelPredictor
from
.util
import
base64_to_cv2
@
moduleinfo
(
name
=
"pixel2style2pixel"
,
type
=
"CV/style_transfer"
,
author
=
"paddlepaddle"
,
author_email
=
""
,
summary
=
""
,
version
=
"1.0.0"
)
class
pixel2style2pixel
:
def
__init__
(
self
):
self
.
pretrained_model
=
os
.
path
.
join
(
self
.
directory
,
"pSp-ffhq-inversion.pdparams"
)
self
.
network
=
Pixel2Style2PixelPredictor
(
weight_path
=
self
.
pretrained_model
,
model_type
=
'ffhq-inversion'
)
def
style_transfer
(
self
,
images
=
None
,
paths
=
None
,
output_dir
=
'./transfer_result/'
,
use_gpu
=
False
,
visualization
=
True
):
'''
images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2).
paths (list[str]): paths to images
output_dir: the dir to save the results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
visualization: if True, save results in output_dir.
'''
results
=
[]
paddle
.
disable_static
()
place
=
'gpu:0'
if
use_gpu
else
'cpu'
place
=
paddle
.
set_device
(
place
)
if
images
==
None
and
paths
==
None
:
print
(
'No image provided. Please input an image or a image path.'
)
return
if
images
!=
None
:
for
image
in
images
:
image
=
image
[:,
:,
::
-
1
]
out
=
self
.
network
.
run
(
image
)
results
.
append
(
out
)
if
paths
!=
None
:
for
path
in
paths
:
image
=
cv2
.
imread
(
path
)[:,
:,
::
-
1
]
out
=
self
.
network
.
run
(
image
)
results
.
append
(
out
)
if
visualization
==
True
:
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
for
i
,
out
in
enumerate
(
results
):
if
out
is
not
None
:
cv2
.
imwrite
(
os
.
path
.
join
(
output_dir
,
'output_{}.png'
.
format
(
i
)),
out
[
0
][:,
:,
::
-
1
])
np
.
save
(
os
.
path
.
join
(
output_dir
,
'output_{}.npy'
.
format
(
i
)),
out
[
1
])
return
results
@
runnable
def
run_cmd
(
self
,
argvs
:
list
):
"""
Run as a command.
"""
self
.
parser
=
argparse
.
ArgumentParser
(
description
=
"Run the {} module."
.
format
(
self
.
name
),
prog
=
'hub run {}'
.
format
(
self
.
name
),
usage
=
'%(prog)s'
,
add_help
=
True
)
self
.
arg_input_group
=
self
.
parser
.
add_argument_group
(
title
=
"Input options"
,
description
=
"Input data. Required"
)
self
.
arg_config_group
=
self
.
parser
.
add_argument_group
(
title
=
"Config options"
,
description
=
"Run configuration for controlling module behavior, not required."
)
self
.
add_module_config_arg
()
self
.
add_module_input_arg
()
self
.
args
=
self
.
parser
.
parse_args
(
argvs
)
results
=
self
.
style_transfer
(
paths
=
[
self
.
args
.
input_path
],
output_dir
=
self
.
args
.
output_dir
,
use_gpu
=
self
.
args
.
use_gpu
,
visualization
=
self
.
args
.
visualization
)
return
results
@
serving
def
serving_method
(
self
,
images
,
**
kwargs
):
"""
Run as a service.
"""
images_decode
=
[
base64_to_cv2
(
image
)
for
image
in
images
]
results
=
self
.
style_transfer
(
images
=
images_decode
,
**
kwargs
)
tolist
=
[
result
.
tolist
()
for
result
in
results
]
return
tolist
def
add_module_config_arg
(
self
):
"""
Add the command config options.
"""
self
.
arg_config_group
.
add_argument
(
'--use_gpu'
,
action
=
'store_true'
,
help
=
"use GPU or not"
)
self
.
arg_config_group
.
add_argument
(
'--output_dir'
,
type
=
str
,
default
=
'transfer_result'
,
help
=
'output directory for saving result.'
)
self
.
arg_config_group
.
add_argument
(
'--visualization'
,
type
=
bool
,
default
=
False
,
help
=
'save results or not.'
)
def
add_module_input_arg
(
self
):
"""
Add the command input options.
"""
self
.
arg_input_group
.
add_argument
(
'--input_path'
,
type
=
str
,
help
=
"path to input image."
)
modules/image/Image_gan/gan/pixel2style2pixel/requirements.txt
0 → 100644
浏览文件 @
8d4fc055
ppgan
dlib
modules/image/Image_gan/gan/pixel2style2pixel/util.py
0 → 100644
浏览文件 @
8d4fc055
import
base64
import
cv2
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录