# If you want to download other versions, you need to change the last/last file name to the version you want to download
```
- To install Anaconda:
- At the command line, enter `sh Anaconda3-2021.05-Linux-x86_64.sh`
- If you download another version, replace the file name of the command with the file name you downloaded
- Just follow the installation prompts
- When viewing the license, you can enter q to exit
-**Add conda to the environment variable**
- The environment variable is added to enable the system to recognize the conda command. If you have added conda to the environment variable path during installation, you can skip this step
- Open `~/.bashrc` in the terminal:
- ```shell
# Enter the following command in the terminal:
vim ~/.bashrc
```
- Add conda as an environment variable in `~/.bashrc`:
- ```shell
# Press i first to enter editing mode
# On the first line, enter:
export PATH="~/anaconda3/bin:$PATH"
# If the installation location is customized during installation, change ~/anaconda3/bin to the bin folder under the customized installation directory
```
- ```shell
# Modified ~/.bash_profile file should be as follows (where xxx is the user name)::
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
- Introduction document of paddlehub: https://github.com/PaddlePaddle/PaddleHub/blob/develop/README.md
- When installing the paddlehub, other dependent libraries will be installed automatically, which may take a while
## Step 4: Install the paddlehub and download the model
- After installing the paddlehub, download the style migration model:
-```shell
# Enter the following command on the command line
hub install stylepro_artistic==1.0.1
```
- Description document of the model: [https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value=%7B%22scenes%22%3A%5B%22GANs%22%5D%7D](https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value={"scenes"%3A["GANs"]})
-<imgsrc="../../imgs/Install_Related/linux/hub_model_intro.png"alt="hub model intro"width="800"align="center"/>
## Step 5: Prepare the style to migrate data and code
### Prepare style migration data
- Create Working Directory `style_transfer` under User Directory `~`
## Step 6: Explore the pre training model of flying oars
- Congratulations, the installation and introduction cases of PaddleHub in the Linux environment will be completed here. Start your more in-depth learning model exploration journey quickly.[【More model exploration, jump to the official website of PaddlePaddle】](https://www.paddlepaddle.org.cn/hublist)
- Select the lowest `Anaconda3-2021.05-MacOSX-x86_64.pkg` download
- After downloading, double click the. pkg file to enter the graphical interface
- By default, the installation will take a while
- It is recommended to install a code editor such as vscode or pycharm
## Step 2: Open the terminal and create a conda environment
- Open terminal
- Press the command key and the space bar at the same time, enter "terminal" in the focus search, and double-click to enter the terminal
-**Add conda to the environment variable**
- The environment variable is added to enable the system to recognize the conda command
- Enter the following command to open `~/.bash_profile`:
- ```shell
vim ~/.bash_profile
```
- In `~/.bash_profile` add conda as an environment variable:
- ```shell
# Press i first to enter editing mode
# On the first line, enter:
export PATH="~/opt/anaconda3/bin:$PATH"
# If the installation location is customized during installation, change ~/opt/anaconda3/bin to the bin folder under the customized installation directory
```
- ```shell
# Modified ~/.bash_profile file should be as follows (where xxx is the user name):
export PATH="~/opt/anaconda3/bin:$PATH"
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
- Introduction document of paddlehub: https://github.com/PaddlePaddle/PaddleHub/blob/develop/README.md
- When installing the paddlehub, other dependent libraries will be installed automatically, which may take a while
## Step 4: Install the paddlehub and download the model
- After installing the PaddleHub, download the style migration model:
-```shell
# Enter the following command on the command line
hub install stylepro_artistic==1.0.1
```
- Description document of the model: [https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value=%7B%22scenes%22%3A%5B%22GANs%22%5D%7D](https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value={"scenes"%3A["GANs"]})
-<imgsrc="../../imgs/Install_Related/mac/hub_model_intro.png"alt="hub model intro"width="800"align="center"/>
## Step 5: Prepare the style to migrate data and code
### Prepare style migration data
- Create Working Directory `style_transfer` on Desktop
## Step 6: Explore the pre training model of flying oars
- Congratulations, the installation and introduction cases of PaddleHub in the Mac environment will be completed here. Start your more in-depth learning model exploration journey quickly.[【More model exploration, jump to the official website of PaddlePaddle】](https://www.paddlepaddle.org.cn/hublist)
- If you need to install the GPU version, please open the [paddle official website](https://www.paddlepaddle.org.cn/) select the appropriate version.
- Paddle official website: https://www.paddlepaddle.org.cn/
- Since CUDA and cudnn need to be configured before installing the GPU version, it is recommended to install the GPU version after a certain foundation
- After installing the Paddle, continue to install the paddlehub in the paddle_env environment:
- Introduction document of paddlehub: https://github.com/PaddlePaddle/PaddleHub/blob/develop/README.md
## Step 4: Install the paddlehub and download the model
- After installing the paddlehub, download the style migration model:
-```shell
# Enter the following command on the command line
hub install stylepro_artistic==1.0.1
```
- Description document of the model: [https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value=%7B%22scenes%22%3A%5B%22GANs%22%5D%7D](https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value={"scenes"%3A["GANs"]})
## Step 6: Explore the pre training model of flying oars
- Congratulations, the installation and introduction cases of PaddleHub in the Windows environment will be completed here. Start your more in-depth learning model exploration journey quickly.[【More model exploration, jump to the official website of PaddlePaddle】](https://www.paddlepaddle.org.cn/hublist)
|[chinese_ocr_db_crnn_server](image/text_recognition/chinese_ocr_db_crnn_server)|Differentiable Binarization+RCNN|icdar2015数据集|中文文字识别|[](https://huggingface.co/spaces/PaddlePaddle/chinese_ocr_db_crnn_server) |
|[chinese_ocr_db_crnn_mobile](image/text_recognition/chinese_ocr_db_crnn_mobile)|Differentiable Binarization+RCNN|icdar2015|Chinese text recognition|[](https://huggingface.co/spaces/PaddlePaddle/chinese_ocr_db_crnn_mobile) |
|[chinese_text_detection_db_mobile](image/text_recognition/chinese_text_detection_db_mobile)|Differentiable Binarization|icdar2015|Chinese text Detection|
|[chinese_text_detection_db_server](image/text_recognition/chinese_text_detection_db_server)|Differentiable Binarization|icdar2015|Chinese text Detection|
|[chinese_ocr_db_crnn_server](image/text_recognition/chinese_ocr_db_crnn_server)|Differentiable Binarization+RCNN|icdar2015|Chinese text recognition|[](https://huggingface.co/spaces/PaddlePaddle/chinese_ocr_db_crnn_server) |
|[chinese_cht_ocr_db_crnn_mobile](image/text_recognition/chinese_cht_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Traditional Chinese text Detection|
|[japan_ocr_db_crnn_mobile](image/text_recognition/japan_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Japanese text recognition|
|[korean_ocr_db_crnn_mobile](image/text_recognition/korean_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Korean text recognition|
|[german_ocr_db_crnn_mobile](image/text_recognition/german_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|German text recognition|
|[french_ocr_db_crnn_mobile](image/text_recognition/french_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|French text recognition|
|[latin_ocr_db_crnn_mobile](image/text_recognition/latin_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Latin text recognition|
|[cyrillic_ocr_db_crnn_mobile](image/text_recognition/cyrillic_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Cyrillic text recognition|
|[multi_languages_ocr_db_crnn](image/text_recognition/multi_languages_ocr_db_crnn)|Differentiable Binarization+RCNN|icdar2015|Multi languages text recognition|
|[kannada_ocr_db_crnn_mobile](image/text_recognition/kannada_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Kannada text recognition|
|[arabic_ocr_db_crnn_mobile](image/text_recognition/arabic_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Arabic text recognition|
|[telugu_ocr_db_crnn_mobile](image/text_recognition/telugu_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Telugu text recognition|
|[devanagari_ocr_db_crnn_mobile](image/text_recognition/devanagari_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Devanagari text recognition|
|[tamil_ocr_db_crnn_mobile](image/text_recognition/tamil_ocr_db_crnn_mobile)|Differentiable Binarization+CRNN|icdar2015|Tamil text recognition|
|[deoldify](image/Image_editing/colorization/deoldify)|GAN|ILSVRC 2012|黑白照片/视频着色|[](https://huggingface.co/spaces/PaddlePaddle/deoldify) |
|[realsr](image/Image_editing/super_resolution/realsr)|LP-KPN|RealSR dataset|Image / Video super-resolution|
|[deoldify](image/Image_editing/colorization/deoldify)|GAN|ILSVRC 2012|Black-and-white image / video colorization|[](https://huggingface.co/spaces/PaddlePaddle/deoldify) |
|[faster_rcnn_resnet50_fpn_venus](image/object_detection/faster_rcnn_resnet50_fpn_venus)|faster_rcnn|Baidu self built dataset|Large-scale general detection|
|[Rumor_prediction](text/text_generation/Rumor_prediction)|-|Sina Weibo Chinese rumor data|Rumor prediction|
|[plato-mini](text/text_generation/plato-mini)|Unified Transformer|Billion level Chinese conversation data|Chinese dialogue|
|[plato2_en_large](text/text_generation/plato2_en_large)|plato2|Open domain multi round dataset|Super large scale generative dialogue|
|[plato2_en_base](text/text_generation/plato2_en_base)|plato2|Open domain multi round dataset|Super large scale generative dialogue|
|[CPM_LM](text/text_generation/CPM_LM)|GPT-2|Self built dataset|Chinese text generation|
|[unified_transformer-12L-cn](text/text_generation/unified_transformer-12L-cn)|Unified Transformer|Ten million level Chinese conversation data|Man machine multi round dialogue|
|[unified_transformer-12L-cn-luge](text/text_generation/unified_transformer-12L-cn-luge)|Unified Transformer|dialogue dataset|Man machine multi round dialogue|
|[reading_pictures_writing_poems](text/text_generation/reading_pictures_writing_poems)|Multi network cascade|-|Look at pictures and write poems|
|[GPT2_CPM_LM](text/text_generation/GPT2_CPM_LM)|||Q&A text generation|
|[GPT2_Base_CN](text/text_generation/GPT2_Base_CN)|||Q&A text generation|
- ### Word Embedding
...
...
@@ -316,7 +317,7 @@ English | [简体中文](README_ch.md)
|[senta_bilstm](text/sentiment_analysis/senta_bilstm)|BiLSTM|百度自建数据集|中文情感倾向分析| [](https://huggingface.co/spaces/PaddlePaddle/senta_bilstm)
|[ernie_skep_sentiment_analysis](text/sentiment_analysis/ernie_skep_sentiment_analysis)|SKEP|Baidu self built dataset|Sentence level sentiment analysis|
|[emotion_detection_textcnn](text/sentiment_analysis/emotion_detection_textcnn)|TextCNN|Baidu self built dataset|Dialogue emotion detection|
|[senta_bilstm](text/sentiment_analysis/senta_bilstm)|BiLSTM|Baidu self built dataset|Chinesesentiment analysis| [](https://huggingface.co/spaces/PaddlePaddle/senta_bilstm)
|[senta_bow](text/sentiment_analysis/senta_bow)|BOW|Baidu self built dataset|Chinese sentiment analysis|
|[senta_gru](text/sentiment_analysis/senta_gru)|GRU|Baidu self built dataset|Chinese sentiment analysis|
|[senta_lstm](text/sentiment_analysis/senta_lstm)|LSTM|Baidu self built dataset|Chinese sentiment analysis|
|[senta_cnn](text/sentiment_analysis/senta_cnn)|CNN|Baidu self built dataset|Chinese sentiment analysis|
|[lac](text/lexical_analysis/lac)|BiGRU+CRF|百度自建数据集|百度自研联合的词法分析模型,能整体性地完成中文分词、词性标注、专名识别任务。在百度自建数据集上评测,LAC效果:Precision=88.0%,Recall=88.7%,F1-Score=88.4%。|[](https://huggingface.co/spaces/PaddlePaddle/lac)
|[jieba_paddle](text/lexical_analysis/jieba_paddle)|BiGRU+CRF|Baidu self built dataset|Jieba uses Paddle to build a word segmentation network (two-way GRU). At the same time, it supports traditional word segmentation methods of jieba, such as precise mode, full mode, search engine mode, etc.|
|[lac](text/lexical_analysis/lac)|BiGRU+CRF|Baidu self built dataset|The lexical analysis model jointly developed by Baidu can complete the tasks of Chinese word segmentation, part of speech tagging and proper name recognition as a whole. Evaluated on Baidu self built dataset, LAC effect: Precision=88.0%, Recall=88.7%, F1 Score=88.4%.|[](https://huggingface.co/spaces/PaddlePaddle/lac)
|[porn_detection_cnn](text/text_review/porn_detection_cnn)|CNN|Baidu self built dataset|Pornography detection, automatically identify whether the text is pornographic and give the corresponding confidence, and identify pornographic descriptions, vulgar friends, and dirty documents in the text|
|[porn_detection_gru](text/text_review/porn_detection_gru)|GRU|Baidu self built dataset|Pornography detection, automatically identify whether the text is pornographic and give the corresponding confidence, and identify pornographic descriptions, vulgar friends, and dirty documents in the text|
|[porn_detection_lstm](text/text_review/porn_detection_lstm)|LSTM|Baidu self built dataset|Pornography detection, automatically identify whether the text is pornographic and give the corresponding confidence, and identify pornographic descriptions, vulgar friends, and dirty documents in the text|
## Audio
...
...
@@ -481,62 +482,62 @@ English | [简体中文](README_ch.md)
|[panns_cnn6](audio/audio_classification/PANNs/cnn6)|PANNs|Google Audioset|It mainly includes 4 convolution layers and 2 full connection layers, and the model parameter is 4.5M. After pre-training, it can be used to extract the embbedding of audio. The dimension is 512|
|[panns_cnn14](audio/audio_classification/PANNs/cnn14)|PANNs|Google Audioset|It mainly includes 4 convolution layers and 2 full connection layers, and the model parameter is 4.5M. After pre-training, it can be used to extract the embbedding of audio. The dimension is 2048|
|[panns_cnn10](audio/audio_classification/PANNs/cnn10)|PANNs|Google Audioset|It mainly includes 4 convolution layers and 2 full connection layers, and the model parameter is 4.5M. After pre-training, it can be used to extract the embbedding of audio. The dimension is 512|
|[jde_darknet53](video/multiple_object_tracking/jde_darknet53)|YOLOv3|Caltech Pedestrian+CityPersons+CUHK-SYSU+PRW+ETHZ+MOT17|object tracking with both accuracy and speed|
## Industrial Application
...
...
@@ -544,4 +545,4 @@ English | [简体中文](README_ch.md)