未验证 提交 76e77f74 编写于 作者: S Steffy-zxf 提交者: GitHub

update docs (#472)

* add finetune to module tutorial; add 1.6 release note
上级 4c58fe5e
......@@ -99,8 +99,15 @@ $ wget https://paddlehub.bj.bcebos.com/resources/test_image.jpg
$ hub run ace2p --input_path test_image.jpg
$ hub run deeplabv3p_xception65_humanseg --input_path test_image.jpg
```
<p align="center">
<img src="./docs/imgs/img_seg_result.jpeg" align="middle"
<img src="./docs/imgs/img_seg_result.jpeg" width="35%" />
<img src="./docs/imgs/humanseg_test_res.png" width="35%" />
</p>
<p align='center'>
&#8194;&#8194;&#8194&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;ace2p分割结果展示&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;
humanseg分割结果展示&#8194;&#8194;&#8194;
</p>
PaddleHub还提供图像分类、语义模型、视频分类、图像生成、图像分割、文本审核、关键点检测等主流模型,更多模型介绍,请前往 [https://www.paddlepaddle.org.cn/hub](https://www.paddlepaddle.org.cn/hub) 查看
......
# `v1.6.0`
* NLP Module全面升级,提升应用性和灵活性
* lac、senta系列(bow、cnn、bilstm、gru、lstm)、simnet_bow、porn_detection系列(cnn、gru、lstm)升级高性能预测,性能提升高达50%
* ERNIE、BERT、RoBERTa等Transformer类语义模型新增获取预训练embedding接口get_embedding,方便接入下游任务,提升应用性
* 新增RoBERTa通过模型结构压缩得到的3层Transformer模型[rbt3](https://www.paddlepaddle.org.cn/hubdetail?name=rbt3&en_category=SemanticModel)[rbtl3](https://www.paddlepaddle.org.cn/hubdetail?name=rbtl3&en_category=SemanticModel)
* Task predict接口增加高性能预测模式accelerate_mode,性能提升高达90%
* PaddleHub Module创建流程开放,支持Fine-tune模型转化,全面提升应用性和灵活性
* [预训练模型转化为PaddleHub Module教程](./docs/contribution/contri_pretrained_model.md)
* [Fine-tune模型转化为PaddleHub Module教程](./docs/tutorial/finetuned_model_to_module.md)
* [PaddleHub Serving](/docs/tutorial/serving.md)优化启动方式,支持更加灵活的参数配置
# `v1.5.4`
* 修复Fine-tune中断,checkpoint文件恢复训练失败的问题
......
......@@ -218,3 +218,9 @@ python predict.py --checkpoint_dir $CKPT_DIR --max_seq_len 128
## 超参优化AutoDL Finetuner
PaddleHub还提供了超参优化(Hyperparameter Tuning)功能, 自动搜索最优模型超参得到更好的模型效果。详细信息参见[AutoDL Finetuner超参优化功能教程](../../docs/tutorial/autofinetune.md)
## Fine-tune之后保存的模型转化为PaddleHub Module
代码详见[finetuned_model_to_module](./finetuned_model_to_module)文件夹下
Fine-tune之后保存的模型转化为PaddleHub Module[教程](../../docs/tutorial/finetuned_model_to_module.md)
# -*- coding:utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification task """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, serving
import paddlehub as hub
@moduleinfo(
name="ernie_tiny_finetuned",
version="1.0.0",
summary="ERNIE tiny which was fine-tuned on the chnsenticorp dataset.",
author="anonymous",
author_email="",
type="nlp/semantic_model")
class ERNIETinyFinetuned(hub.Module):
def _initialize(self,
ckpt_dir="ckpt_chnsenticorp",
num_class=2,
max_seq_len=128,
use_gpu=False,
batch_size=1):
self.ckpt_dir = os.path.join(self.directory, ckpt_dir)
self.num_class = num_class
self.MAX_SEQ_LEN = max_seq_len
# Load Paddlehub ERNIE Tiny pretrained model
self.module = hub.Module(name="ernie_tiny")
inputs, outputs, program = self.module.context(
trainable=True, max_seq_len=max_seq_len)
self.vocab_path = self.module.get_vocab_path()
# Download dataset and use accuracy as metrics
# Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
# metric should be acc, f1 or matthews
metrics_choices = ["acc"]
# For ernie_tiny, it use sub-word to tokenize chinese sentence
# If not ernie tiny, sp_model_path and word_dict_path should be set None
reader = hub.reader.ClassifyReader(
vocab_path=self.module.get_vocab_path(),
max_seq_len=max_seq_len,
sp_model_path=self.module.get_spm_path(),
word_dict_path=self.module.get_word_dict_path())
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of module need
feed_list = [
inputs["input_ids"].name,
inputs["position_ids"].name,
inputs["segment_ids"].name,
inputs["input_mask"].name,
]
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_data_parallel=False,
use_cuda=use_gpu,
batch_size=batch_size,
checkpoint_dir=self.ckpt_dir,
strategy=hub.AdamWeightDecayStrategy())
# Define a classfication finetune task by PaddleHub's API
self.cls_task = hub.TextClassifierTask(
data_reader=reader,
feature=pooled_output,
feed_list=feed_list,
num_classes=self.num_class,
config=config,
metrics_choices=metrics_choices)
def predict(self, data, return_result=False, accelerate_mode=True):
"""
Get prediction results
"""
run_states = self.cls_task.predict(
data=data,
return_result=return_result,
accelerate_mode=accelerate_mode)
return run_states
if __name__ == "__main__":
ernie_tiny = ERNIETinyFinetuned(
ckpt_dir="../ckpt_chnsenticorp", num_class=2)
# Data to be prdicted
data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
index = 0
run_states = ernie_tiny.predict(data=data)
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
# get predict index
batch_result = np.argmax(batch_result, axis=2)[0]
for result in batch_result:
print("%s\tpredict=%s" % (data[index][0], result))
index += 1
# 贡献预训练模型
# 如何编写一个PaddleHub Module
我们非常欢迎开发者贡献预训练模型到PaddleHub中,如果你想要贡献预训练模型,请提供以下资源:
## 模型基本信息
## 模型
我们准备编写一个PaddleHub Module,Module的基本信息如下:
```yaml
name: senta_test
version: 1.0.0
summary: This is a PaddleHub Module. Just for test.
author: anonymous
author_email:
type: nlp/sentiment_analysis
```
请提供相应的网络结构和参数文件,除了PaddlePaddle的模型外,我们也支持将其他主流框架的模型转换到PaddleHub中,包括:
* tensorflow
* pytorch
* mxnet
* caffe
* onnx
**本示例代码可以参考[senta_module_sample](../../demo/senta_module_sample/)**
您可以直接使用 [**x2paddle**](https://github.com/PaddlePaddle/X2Paddle) 进行转换,也可以将相应模型提供给我们,由我们进行转换
Module存在一个接口sentiment_classify,用于接收传入文本,并给出文本的情感倾向(正面/负面),支持python接口调用和命令行调用。
```python
import paddlehub as hub
## 相关代码
senta_test = hub.Module(name="senta_test")
senta_test.sentiment_classify(texts=["这部电影太差劲了"])
```
```cmd
hub run senta_test --input_text 这部电影太差劲了
```
* 支持预测的模型,请提供相应的预测脚本以及测试样例
* 支持finetune的模型,请提供相应的finetune demo
<br/>
## 相应的介绍资料
## 策略
|资料|是否必选|
为了示例代码简单起见,我们使用一个非常简单的情感判断策略,当输入文本中带有词表中指定单词时,则判断文本倾向为负向,否则为正向
<br/>
## Module创建
### step 1. 创建必要的目录与文件
创建一个senta_test的目录,并在senta_test目录下分别创建__init__.py、module.py、processor.py、vocab.list,其中
|文件名|用途|
|-|-|
|模型结构|√|
|预训练的数据集|√|
|模型介绍文案|√|
|源代码链接||
|模型结构图||
|第三方库依赖||
|\_\_init\_\_.py|空文件|
|module.py|主模块,提供Module的实现代码|
|processor.py|辅助模块,提供词表加载的方法|
|vocab.list|存放词表|
```cmd
➜ tree senta_test
senta_test/
├── vocab.list
├── __init__.py
├── module.py
└── processor.py
```
### step 2. 实现辅助模块processor
在processor.py中实现一个load_vocab接口用于读取词表
```python
def load_vocab(vocab_path):
with open(vocab_path) as file:
return file.read().split()
```
### step 3. 编写Module处理代码
module.py文件为Module的入口代码所在,我们需要在其中实现预测逻辑。
#### step 3_1. 引入必要的头文件
```python
import argparse
import os
import paddlehub as hub
from paddlehub.module.module import runnable, moduleinfo
from senta_test.processor import load_vocab
```
**NOTE:** 当引用Module中模块时,需要输入全路径,如senta_test.processor
#### step 3_2. 定义SentaTest类
module.py中需要有一个继承了hub.Module的类存在,该类负责实现预测逻辑,并使用moduleinfo填写基本信息。当使用hub.Module(name="senta_test")加载Module时,PaddleHub会自动创建SentaTest的对象并返回。
```python
@moduleinfo(
name="senta_test",
version="1.0.0",
summary="This is a PaddleHub Module. Just for test.",
author="anonymous",
author_email="",
type="nlp/sentiment_analysis",
)
class SentaTest(hub.Module):
...
```
#### step 3_3. 执行必要的初始化
```python
def _initialize(self):
# add arg parser
self.parser = argparse.ArgumentParser(
description="Run the senta_test module.",
prog='hub run senta_test',
usage='%(prog)s',
add_help=True)
self.parser.add_argument(
'--input_text', type=str, default=None, help="text to predict")
# load word dict
vocab_path = os.path.join(self.directory, "vocab.list")
self.vocab = load_vocab(vocab_path)
```
`注意`:执行类的初始化不能使用默认的__init__接口,而是应该重载实现_initialize接口。对象默认内置了directory属性,可以直接获取到Module所在路径
#### step 3_4. 完善预测逻辑
```python
def sentiment_classify(self, texts):
results = []
for text in texts:
sentiment = "positive"
for word in self.vocab:
if word in text:
sentiment = "negative"
break
results.append({"text":text, "sentiment":sentiment})
return results
```
#### step 3_5. 支持命令行调用
如果希望Module可以支持命令行调用,则需要提供一个经过runnable修饰的接口,接口负责解析传入数据并进行预测,将结果返回。
如果不需要提供命令行预测功能,则可以不实现该接口,PaddleHub在用命令行执行时,会自动发现该Module不支持命令行方式,并给出提示。
```python
@runnable
def run_cmd(self, argvs):
args = self.parser.parse_args(argvs)
texts = [args.input_text]
return self.sentiment_classify(texts)
```
#### step 3_6. 支持serving调用
如果希望Module可以支持PaddleHub Serving部署预测服务,则需要提供一个经过serving修饰的接口,接口负责解析传入数据并进行预测,将结果返回。
如果不需要提供PaddleHub Serving部署预测服务,则可以不需要加上serving修饰。
```python
@serving
def sentiment_classify(self, texts):
results = []
for text in texts:
sentiment = "positive"
for word in self.vocab:
if word in text:
sentiment = "negative"
break
results.append({"text":text, "sentiment":sentiment})
return results
```
### 完整代码
* [module.py](./senta_test/module.py)
* [processor.py](./senta_test/module.py)
<br/>
## 测试步骤
完成Module编写后,我们可以通过以下方式测试该Module
### 调用方法1
将Module安装到本机中,再通过Hub.Module(name=...)加载
```shell
hub install senta_test
```
```python
import paddlehub as hub
senta_test = hub.Module(name="senta_test")
senta_test.sentiment_classify(texts=["这部电影太差劲了"])
```
### 调用方法2
直接通过Hub.Module(directory=...)加载
```python
import paddlehub as hub
senta_test = hub.Module(directory="senta_test/")
senta_test.sentiment_classify(texts=["这部电影太差劲了"])
```
### 调用方法3
将senta_test作为路径加到环境变量中,直接加载SentaTest对象
```shell
export PYTHONPATH=senta_test:$PYTHONPATH
```
```python
from senta_test.module import SentaTest
SentaTest.sentiment_classify(texts=["这部电影太差劲了"])
```
**NOTE:**
### 调用方法4
将Module安装到本机中,再通过hub run运行
* 为了保证使用体验,请确保模型在python 2.7/3.x下均可正常运行
```shell
hub install senta_test
hub run senta_test --input_text "这部电影太差劲了"
```
# Fine-tune保存的模型如何转化为一个PaddleHub Module
## 模型基本信息
本示例以模型ERNIE Tiny在数据集ChnSentiCorp上完成情感分类Fine-tune任务后保存的模型转化为一个PaddleHub Module,Module的基本信息如下:
```yaml
name: ernie_tiny_finetuned
version: 1.0.0
summary: ERNIE tiny which was fine-tuned on the chnsenticorp dataset.
author: anonymous
author_email:
type: nlp/semantic_model
```
**本示例代码可以参考[finetuned_model_to_module](../../demo/text_classification/finetuned_model_to_module/)**
Module存在一个接口predict,用于接收带预测,并给出文本的情感倾向(正面/负面),支持python接口调用和命令行调用。
```python
import paddlehub as hub
ernie_tiny_finetuned = hub.Module(name="ernie_tiny_finetuned")
ernie_tiny_finetuned.predcit(data=[["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]])
```
## Module创建
### step 1. 创建必要的目录与文件
创建一个finetuned_model_to_module的目录,并在finetuned_model_to_module目录下分别创建__init__.py、module.py,其中
|文件名|用途|
|-|-|
|\_\_init\_\_.py|空文件|
|module.py|主模块,提供Module的实现代码|
|ckpt文件|利用PaddleHub Fine-tune得到的ckpt文件夹,其中必须包含best_model文件|
```cmd
➜ tree finetuned_model_to_module
finetuned_model_to_module/
├── __init__.py
├── ckpt_chnsenticorp
│   ├── ***
│   ├── best_model
│   │   ├── ***
└── module.py
```
### step 2. 编写Module处理代码
module.py文件为Module的入口代码所在,我们需要在其中实现预测逻辑。
#### step 2_1. 引入必要的头文件
```python
import os
import numpy as np
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, serving
import paddlehub as hub
```
#### step 2_2. 定义ERNIE_Tiny_Finetuned类
module.py中需要有一个继承了hub.Module的类存在,该类负责实现预测逻辑,并使用moduleinfo填写基本信息。当使用hub.Module(name="ernie_tiny_finetuned")加载Module时,PaddleHub会自动创建ERNIE_Tiny_Finetuned的对象并返回。
```python
@moduleinfo(
name="ernie_tiny_finetuned",
version="1.0.0",
summary="ERNIE tiny which was fine-tuned on the chnsenticorp dataset.",
author="anonymous",
author_email="",
type="nlp/semantic_model")
class ERNIETinyFinetuned(hub.Module):
...
```
#### step 2_3. 执行必要的初始化
```python
def _initialize(self,
ckpt_dir="ckpt_chnsenticorp",
num_class=2,
max_seq_len=128,
use_gpu=False,
batch_size=1):
self.ckpt_dir = os.path.join(self.directory, ckpt_dir)
self.num_class = num_class
self.MAX_SEQ_LEN = max_seq_len
self.params_path = os.path.join(self.ckpt_dir, 'best_model')
if not os.path.exists(self.params_path):
logger.error(
"%s doesn't contain the best_model file which saves the best parameters as fietuning."
)
exit()
# Load Paddlehub ERNIE Tiny pretrained model
self.module = hub.Module(name="ernie_tiny")
inputs, outputs, program = self.module.context(
trainable=True, max_seq_len=max_seq_len)
self.vocab_path = self.module.get_vocab_path()
# Download dataset and use accuracy as metrics
# Choose dataset: GLUE/XNLI/ChinesesGLUE/NLPCC-DBQA/LCQMC
# metric should be acc, f1 or matthews
metrics_choices = ["acc"]
# For ernie_tiny, it use sub-word to tokenize chinese sentence
# If not ernie tiny, sp_model_path and word_dict_path should be set None
reader = hub.reader.ClassifyReader(
vocab_path=self.module.get_vocab_path(),
max_seq_len=max_seq_len,
sp_model_path=self.module.get_spm_path(),
word_dict_path=self.module.get_word_dict_path())
# Construct transfer learning network
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_output" for token-level output.
pooled_output = outputs["pooled_output"]
# Setup feed list for data feeder
# Must feed all the tensor of module need
feed_list = [
inputs["input_ids"].name,
inputs["position_ids"].name,
inputs["segment_ids"].name,
inputs["input_mask"].name,
]
# Setup runing config for PaddleHub Finetune API
config = hub.RunConfig(
use_data_parallel=False,
use_cuda=use_gpu,
batch_size=batch_size,
checkpoint_dir=self.ckpt_dir,
strategy=hub.AdamWeightDecayStrategy())
# Define a classfication finetune task by PaddleHub's API
self.cls_task = hub.TextClassifierTask(
data_reader=reader,
feature=pooled_output,
feed_list=feed_list,
num_classes=self.num_class,
config=config,
metrics_choices=metrics_choices)
```
初始化过程即为Fine-tune时创建Task的过程。
**NOTE:** 执行类的初始化不能使用默认的__init__接口,而是应该重载实现_initialize接口。对象默认内置了directory属性,可以直接获取到Module所在路径
#### step 3_4. 完善预测逻辑
```python
def predict(self, data, return_result=False, accelerate_mode=True):
"""
Get prediction results
"""
run_states = self.cls_task.predict(
data=data,
return_result=return_result,
accelerate_mode=accelerate_mode)
return run_states
```
#### step 3_5. 支持serving调用
如果希望Module可以支持PaddleHub Serving部署预测服务,则需要将预测接口predcit加上serving修饰(`@serving`),接口负责解析传入数据并进行预测,将结果返回。
如果不需要提供PaddleHub Serving部署预测服务,则可以不需要加上serving修饰。
```python
@serving
def predict(self, data, return_result=False, accelerate_mode=True):
"""
Get prediction results
"""
run_states = self.cls_task.predict(
data=data,
return_result=return_result,
accelerate_mode=accelerate_mode)
return run_states
```
### 完整代码
* [module.py](../../demo/text_classification/finetuned_model_to_module/module.py)
* [__init__.py](../../demo/text_classification/finetuned_model_to_module/__init__.py)
**NOTE:** `__init__.py`是空文件
## 测试步骤
完成Module编写后,我们可以通过以下方式测试该Module
### 调用方法1
将Module安装到本机中,再通过Hub.Module(name=...)加载
```shell
hub install finetuned_model_to_module
```
安装成功会显示**Successfully installed ernie_tiny_finetuned**
```python
import paddlehub as hub
import numpy as np
ernie_tiny = hub.Module(name="ernie_tiny_finetuned")
# Data to be prdicted
data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
index = 0
run_states = ernie_tiny.predict(data=data)
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
# get predict index
batch_result = np.argmax(batch_result, axis=2)[0]
for result in batch_result:
print("%s\tpredict=%s" % (data[index][0], result))
index += 1
```
### 调用方法2
直接通过Hub.Module(directory=...)加载
```python
import paddlehub as hub
import numpy as np
ernie_tiny_finetuned = hub.Module(directory="finetuned_model_to_module/")
# Data to be prdicted
data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
index = 0
run_states = ernie_tiny.predict(data=data)
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
# get predict index
batch_result = np.argmax(batch_result, axis=2)[0]
for result in batch_result:
print("%s\tpredict=%s" % (data[index][0], result))
index += 1
```
### 调用方法3
将finetuned_model_to_module作为路径加到环境变量中,直接加载ERNIETinyFinetuned对象
```shell
export PYTHONPATH=finetuned_model_to_module:$PYTHONPATH
```
```python
from finetuned_model_to_module.module import ERNIETinyFinetuned
import numpy as np
# Data to be prdicted
data = [["这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般"], ["交通方便;环境很好;服务态度很好 房间较小"],
["19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~"]]
run_states = ERNIETinyFinetuned.predict(data=data)
index = 0
results = [run_state.run_results for run_state in run_states]
for batch_result in results:
# get predict index
batch_result = np.argmax(batch_result, axis=2)[0]
for result in batch_result:
print("%s\tpredict=%s" % (data[index][0], result))
index += 1
```
......@@ -11,6 +11,7 @@
命令行工具<cmdintro>
自定义数据<how_to_load_data>
Fine-tune模型转化为PaddleHub Module<finetuned_model_to_module.md>
自定义任务<how_to_define_task>
服务化部署<serving>
文本Embedding服务<bert_service>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册