未验证 提交 6ca472e5 编写于 作者: C chenjian 提交者: GitHub

Add ocr modules and update the docs according to template (#1603)

上级 d32cc733
# german_ocr_db_crnn_mobile
|模型名称|german_ocr_db_crnn_mobile|
| :--- | :---: |
|类别|图像-文字识别|
|网络|Differentiable Binarization+CRNN|
|数据集|icdar2015数据集|
|是否支持Fine-tuning|否|
|模型大小|3.8MB|
|最新更新日期|2021-02-26|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/133761772-8c47f25f-0d95-45b4-8075-867dbbd14c86.jpg" width="80%" hspace='10'/> <br />
</p>
- ### 模型介绍
- german_ocr_db_crnn_mobile Module用于识别图片当中的德文。其基于chinese_text_detection_db_mobile检测得到的文本框,继续识别文本框中的德文文字。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个识别德文的轻量级OCR模型,支持直接预测。
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 1.8.0
- paddlehub >= 1.8.0 | [如何安装paddlehub](../../../../docs/docs_ch/get_start/installation.rst)
- shapely
- pyclipper
- ```shell
$ pip install shapely pyclipper
```
- **该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。**
- ### 2、安装
- ```shell
$ hub install german_ocr_db_crnn_mobile
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
$ hub run german_ocr_db_crnn_mobile --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现文字识别模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、代码示例
- ```python
import paddlehub as hub
import cv2
ocr = hub.Module(name="german_ocr_db_crnn_mobile", enable_mkldnn=True) # mkldnn加速仅在CPU下有效
result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
```
- ### 3、API
- ```python
def __init__(text_detector_module=None, enable_mkldnn=False)
```
- 构造GenmanOCRDBCRNNMobile对象
- **参数**
- text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用[chinese_text_detection_db_mobile Module](../chinese_text_detection_db_mobile/)。其作用为检测图片当中的文本。<br/>
- enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
- ```python
def recognize_text(images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9)
```
- 预测API,检测输入图片中的所有德文文本的位置。
- **参数**
- paths (list\[str\]): 图片的路径; <br/>
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\],BGR格式; <br/>
- use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量** <br/>
- box\_thresh (float): 检测文本框置信度的阈值; <br/>
- text\_thresh (float): 识别德文文本置信度的阈值; <br/>
- angle_classification_thresh(float): 文本角度分类置信度的阈值 <br/>
- visualization (bool): 是否将识别结果保存为图片文件; <br/>
- output\_dir (str): 图片的保存路径,默认设为 ocr\_result;
- **返回**
- res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
- data (list\[dict\]): 识别文本结果,列表中每一个元素为 dict,各字段为:
- text(str): 识别得到的文本
- confidence(float): 识别文本结果置信度
- text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标
如果无识别结果则data为\[\]
- save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''
## 四、服务部署
- PaddleHub Serving 可以部署一个目标检测的在线服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m german_ocr_db_crnn_mobile
```
- 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/german_ocr_db_crnn_mobile"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install german_ocr_db_crnn_mobile==1.0.0
```
!
"
$
%
&
'
(
)
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
>
?
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
]
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
£
§
­
²
´
µ
·
º
¼
½
¿
À
Á
Ä
Å
Ç
É
Í
Ï
Ô
Ö
Ø
Ù
Ü
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
í
ï
ñ
ò
ó
ô
ö
ø
ù
ú
û
ü
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import string
class CharacterOps(object):
""" Convert between text-label and text-index """
def __init__(self, config):
self.character_type = config['character_type']
self.loss_type = config['loss_type']
self.max_text_len = config['max_text_length']
if self.character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif self.character_type in [
"ch", 'japan', 'korean', 'french', 'german'
]:
character_dict_path = config['character_dict_path']
add_space = False
if 'use_space_char' in config:
add_space = config['use_space_char']
self.character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if add_space:
self.character_str += " "
dict_character = list(self.character_str)
elif self.character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
else:
self.character_str = None
assert self.character_str is not None, \
"Nonsupport type of the character: {}".format(self.character_str)
self.beg_str = "sos"
self.end_str = "eos"
if self.loss_type == "attention":
dict_character = [self.beg_str, self.end_str] + dict_character
elif self.loss_type == "srn":
dict_character = dict_character + [self.beg_str, self.end_str]
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
text = np.array(text_list)
return text
def decode(self, text_index, is_remove_duplicate=False):
""" convert text-index into text-label. """
char_list = []
char_num = self.get_char_num()
if self.loss_type == "attention":
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
ignored_tokens = [beg_idx, end_idx]
else:
ignored_tokens = [char_num]
for idx in range(len(text_index)):
if text_index[idx] in ignored_tokens:
continue
if is_remove_duplicate:
if idx > 0 and text_index[idx - 1] == text_index[idx]:
continue
char_list.append(self.character[int(text_index[idx])])
text = ''.join(char_list)
return text
def get_char_num(self):
return len(self.character)
def get_beg_end_flag_idx(self, beg_or_end):
if self.loss_type == "attention":
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx"\
% beg_or_end
return idx
else:
err = "error in get_beg_end_flag_idx when using the loss %s"\
% (self.loss_type)
assert False, err
def cal_predicts_accuracy(char_ops,
preds,
preds_lod,
labels,
labels_lod,
is_remove_duplicate=False):
acc_num = 0
img_num = 0
for ino in range(len(labels_lod) - 1):
beg_no = preds_lod[ino]
end_no = preds_lod[ino + 1]
preds_text = preds[beg_no:end_no].reshape(-1)
preds_text = char_ops.decode(preds_text, is_remove_duplicate)
beg_no = labels_lod[ino]
end_no = labels_lod[ino + 1]
labels_text = labels[beg_no:end_no].reshape(-1)
labels_text = char_ops.decode(labels_text, is_remove_duplicate)
img_num += 1
if preds_text == labels_text:
acc_num += 1
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def cal_predicts_accuracy_srn(char_ops,
preds,
labels,
max_text_len,
is_debug=False):
acc_num = 0
img_num = 0
char_num = char_ops.get_char_num()
total_len = preds.shape[0]
img_num = int(total_len / max_text_len)
for i in range(img_num):
cur_label = []
cur_pred = []
for j in range(max_text_len):
if labels[j + i * max_text_len] != int(char_num - 1): #0
cur_label.append(labels[j + i * max_text_len][0])
else:
break
for j in range(max_text_len + 1):
if j < len(cur_label) and preds[j + i * max_text_len][
0] != cur_label[j]:
break
elif j == len(cur_label) and j == max_text_len:
acc_num += 1
break
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(
char_num - 1):
acc_num += 1
break
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def convert_rec_attention_infer_res(preds):
img_num = preds.shape[0]
target_lod = [0]
convert_ids = []
for ino in range(img_num):
end_pos = np.where(preds[ino, :] == 1)[0]
if len(end_pos) <= 1:
text_list = preds[ino, 1:]
else:
text_list = preds[ino, 1:end_pos[1]]
target_lod.append(target_lod[ino] + len(text_list))
convert_ids = convert_ids + list(text_list)
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
def convert_rec_label_to_lod(ori_labels):
img_num = len(ori_labels)
target_lod = [0]
convert_ids = []
for ino in range(img_num):
target_lod.append(target_lod[ino] + len(ori_labels[ino]))
convert_ids = convert_ids + list(ori_labels[ino])
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from PIL import Image, ImageDraw, ImageFont
import base64
import cv2
import numpy as np
def draw_ocr(image,
boxes,
txts,
scores,
font_file,
draw_txt=True,
drop_score=0.5):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
draw_txt(bool): whether draw text or not
drop_score(float): only scores greater than drop_threshold will be visualized
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score or math.isnan(score):
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if draw_txt:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts,
scores,
font_file,
img_h=img.shape[0],
img_w=600,
threshold=drop_score)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def text_visual(texts, scores, font_file, img_h=400, img_w=600, threshold=0.):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype(font_file, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def resize_img(img, input_size=600):
img = np.array(img)
im_shape = img.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def get_image_ext(image):
if image.shape[2] == 4:
return ".png"
return ".jpg"
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
# japan_ocr_db_crnn_mobile
|模型名称|japan_ocr_db_crnn_mobile|
| :--- | :---: |
|类别|图像-文字识别|
|网络|Differentiable Binarization+CRNN|
|数据集|icdar2015数据集|
|是否支持Fine-tuning|否|
|模型大小|8MB|
|最新更新日期|2021-04-15|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/133761650-91f24c1e-f437-47b1-8cfb-a074e7150ff5.jpg" width='80%' hspace='10'/> <br />
</p>
- ### 模型介绍
- japan_ocr_db_crnn_mobile Module用于识别图片当中的日文。其基于chinese_text_detection_db_mobile检测得到的文本框,继续识别文本框中的日文文字。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个识别日文的轻量级OCR模型,支持直接预测。
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 1.8.0
- paddlehub >= 1.8.0 | [如何安装paddlehub](../../../../docs/docs_ch/get_start/installation.rst)
- shapely
- pyclipper
- ```shell
$ pip install shapely pyclipper
```
- **该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。**
- ### 2、安装
- ```shell
$ hub install japan_ocr_db_crnn_mobile
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
$ hub run japan_ocr_db_crnn_mobile --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现文字识别模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、代码示例
- ```python
import paddlehub as hub
import cv2
ocr = hub.Module(name="japan_ocr_db_crnn_mobile", enable_mkldnn=True) # mkldnn加速仅在CPU下有效
result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
```
- ### 3、API
- ```python
def __init__(text_detector_module=None, enable_mkldnn=False)
```
- 构造JapanOCRDBCRNNMobile对象
- **参数**
- text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用[chinese_text_detection_db_mobile Module](../chinese_text_detection_db_mobile/)。其作用为检测图片当中的文本。<br/>
- enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
- ```python
def recognize_text(images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9)
```
- 预测API,检测输入图片中的所有日文文本的位置。
- **参数**
- paths (list\[str\]): 图片的路径; <br/>
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\],BGR格式; <br/>
- use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量** <br/>
- output\_dir (str): 图片的保存路径,默认设为 ocr\_result; <br/>
- box\_thresh (float): 检测文本框置信度的阈值; <br/>
- text\_thresh (float): 识别日文文本置信度的阈值; <br/>
- angle_classification_thresh(float): 文本角度分类置信度的阈值 <br/>
- visualization (bool): 是否将识别结果保存为图片文件。
- **返回**
- res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
- data (list\[dict\]): 识别文本结果,列表中每一个元素为 dict,各字段为:
- text(str): 识别得到的文本
- confidence(float): 识别文本结果置信度
- text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标
如果无识别结果则data为\[\]
- save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''
## 四、服务部署
- PaddleHub Serving 可以部署一个目标检测的在线服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m japan_ocr_db_crnn_mobile
```
- 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/japan_ocr_db_crnn_mobile"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install japan_ocr_db_crnn_mobile==1.0.0
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import string
class CharacterOps(object):
""" Convert between text-label and text-index """
def __init__(self, config):
self.character_type = config['character_type']
self.loss_type = config['loss_type']
self.max_text_len = config['max_text_length']
if self.character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif self.character_type in [
"ch", 'japan', 'korean', 'french', 'german'
]:
character_dict_path = config['character_dict_path']
add_space = False
if 'use_space_char' in config:
add_space = config['use_space_char']
self.character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if add_space:
self.character_str += " "
dict_character = list(self.character_str)
elif self.character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
else:
self.character_str = None
assert self.character_str is not None, \
"Nonsupport type of the character: {}".format(self.character_str)
self.beg_str = "sos"
self.end_str = "eos"
if self.loss_type == "attention":
dict_character = [self.beg_str, self.end_str] + dict_character
elif self.loss_type == "srn":
dict_character = dict_character + [self.beg_str, self.end_str]
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
text = np.array(text_list)
return text
def decode(self, text_index, is_remove_duplicate=False):
""" convert text-index into text-label. """
char_list = []
char_num = self.get_char_num()
if self.loss_type == "attention":
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
ignored_tokens = [beg_idx, end_idx]
else:
ignored_tokens = [char_num]
for idx in range(len(text_index)):
if text_index[idx] in ignored_tokens:
continue
if is_remove_duplicate:
if idx > 0 and text_index[idx - 1] == text_index[idx]:
continue
char_list.append(self.character[int(text_index[idx])])
text = ''.join(char_list)
return text
def get_char_num(self):
return len(self.character)
def get_beg_end_flag_idx(self, beg_or_end):
if self.loss_type == "attention":
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx"\
% beg_or_end
return idx
else:
err = "error in get_beg_end_flag_idx when using the loss %s"\
% (self.loss_type)
assert False, err
def cal_predicts_accuracy(char_ops,
preds,
preds_lod,
labels,
labels_lod,
is_remove_duplicate=False):
acc_num = 0
img_num = 0
for ino in range(len(labels_lod) - 1):
beg_no = preds_lod[ino]
end_no = preds_lod[ino + 1]
preds_text = preds[beg_no:end_no].reshape(-1)
preds_text = char_ops.decode(preds_text, is_remove_duplicate)
beg_no = labels_lod[ino]
end_no = labels_lod[ino + 1]
labels_text = labels[beg_no:end_no].reshape(-1)
labels_text = char_ops.decode(labels_text, is_remove_duplicate)
img_num += 1
if preds_text == labels_text:
acc_num += 1
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def cal_predicts_accuracy_srn(char_ops,
preds,
labels,
max_text_len,
is_debug=False):
acc_num = 0
img_num = 0
char_num = char_ops.get_char_num()
total_len = preds.shape[0]
img_num = int(total_len / max_text_len)
for i in range(img_num):
cur_label = []
cur_pred = []
for j in range(max_text_len):
if labels[j + i * max_text_len] != int(char_num - 1): #0
cur_label.append(labels[j + i * max_text_len][0])
else:
break
for j in range(max_text_len + 1):
if j < len(cur_label) and preds[j + i * max_text_len][
0] != cur_label[j]:
break
elif j == len(cur_label) and j == max_text_len:
acc_num += 1
break
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(
char_num - 1):
acc_num += 1
break
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def convert_rec_attention_infer_res(preds):
img_num = preds.shape[0]
target_lod = [0]
convert_ids = []
for ino in range(img_num):
end_pos = np.where(preds[ino, :] == 1)[0]
if len(end_pos) <= 1:
text_list = preds[ino, 1:]
else:
text_list = preds[ino, 1:end_pos[1]]
target_lod.append(target_lod[ino] + len(text_list))
convert_ids = convert_ids + list(text_list)
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
def convert_rec_label_to_lod(ori_labels):
img_num = len(ori_labels)
target_lod = [0]
convert_ids = []
for ino in range(img_num):
target_lod.append(target_lod[ino] + len(ori_labels[ino]))
convert_ids = convert_ids + list(ori_labels[ino])
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from PIL import Image, ImageDraw, ImageFont
import base64
import cv2
import numpy as np
def draw_ocr(image,
boxes,
txts,
scores,
font_file,
draw_txt=True,
drop_score=0.5):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
draw_txt(bool): whether draw text or not
drop_score(float): only scores greater than drop_threshold will be visualized
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score or math.isnan(score):
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if draw_txt:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts,
scores,
font_file,
img_h=img.shape[0],
img_w=600,
threshold=drop_score)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def text_visual(texts, scores, font_file, img_h=400, img_w=600, threshold=0.):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype(font_file, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def resize_img(img, input_size=600):
img = np.array(img)
im_shape = img.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def get_image_ext(image):
if image.shape[2] == 4:
return ".png"
return ".jpg"
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
## 概述
Vehicle_License_Plate_Recognition 是一个基于 CCPD 数据集训练的车牌识别模型,能够检测出图像中车牌位置并识别其中的车牌文字信息,大致的模型结构如下,分为检测车牌和文字识别两个模块:
# Vehicle_License_Plate_Recognition
![](https://ai-studio-static-online.cdn.bcebos.com/35a3dab32ac948549de41afba7b51a5770d3f872d60b437d891f359a5cef8052)
|模型名称|Vehicle_License_Plate_Recognition|
| :--- | :---: |
|类别|图像 - 文字识别|
|网络|-|
|数据集|CCPD|
|是否支持Fine-tuning|否|
|模型大小|111MB|
|最新更新日期|2021-03-22|
|数据指标|-|
## API
```python
def plate_recognition(images)
```
车牌识别 API
**参数**
* images(str / ndarray / list(str) / list(ndarray)):待识别图像的路径或者图像的 Ndarray(RGB)
## 一、模型基本信息
**返回**
* results(list(dict{'license', 'bbox'})): 识别到的车牌信息列表,包含车牌的位置坐标和车牌号码
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://ai-studio-static-online.cdn.bcebos.com/35a3dab32ac948549de41afba7b51a5770d3f872d60b437d891f359a5cef8052" width = "450" height = "300" hspace='10'/> <br />
</p>
**代码示例**
```python
import paddlehub as hub
# 加载模型
model = hub.Module(name='Vehicle_License_Plate_Recognition')
- ### 模型介绍
# 车牌识别
result = model.plate_recognition("test.jpg")
- Vehicle_License_Plate_Recognition是一个基于CCPD数据集训练的车牌识别模型,能够检测出图像中车牌位置并识别其中的车牌文字信息。
# 打印结果
print(result)
```
[{'license': '苏B92912', 'bbox': [[131.0, 251.0], [368.0, 253.0], [367.0, 338.0], [131.0, 336.0]]}]
## 服务部署
## 二、安装
PaddleHub Serving 可以部署一个在线车牌识别服务。
- ### 1、环境依赖
## 第一步:启动PaddleHub Serving
- paddlepaddle >= 2.0.0
运行启动命令:
```shell
$ hub serving start --modules Vehicle_License_Plate_Recognition
```
- paddlehub >= 2.0.4
这样就完成了一个车牌识别的在线服务API的部署,默认端口号为8866。
- paddleocr >= 2.0.2
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 2、安装
## 第二步:发送预测请求
- ```shell
$ hub install Vehicle_License_Plate_Recognition
```
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
## 三、模型API预测
```python
import requests
import json
import cv2
import base64
- ### 1、代码示例
- ```python
import paddlehub as hub
import cv2
def cv2_to_base64(image):
model = hub.Module(name="Vehicle_License_Plate_Recognition")
result = model.plate_recognition(images=[cv2.imread('/PATH/TO/IMAGE')])
```
- ### 2、API
- ```python
def plate_recognition(images)
```
- 车牌识别 API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];<br/>
- **返回**
- results(list(dict{'license', 'bbox'})): 识别到的车牌信息列表,包含车牌的位置坐标和车牌号码
## 四、服务部署
- PaddleHub Serving可以部署一个在线车牌识别服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m Vehicle_License_Plate_Recognition
```
- 这样就完成了一个车牌识别的在线服务API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/Vehicle_License_Plate_Recognition"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("test.jpg"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/Vehicle_License_Plate_Recognition"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
# 打印预测结果
print(r.json()["results"])
```
[{'bbox': [[260.0, 100.0], [546.0, 104.0], [544.0, 200.0], [259.0, 196.0]], 'license': '苏DS0000'}]
## 查看代码
https://github.com/jm12138/License_plate_recognition
## 五、更新历史
## 依赖
paddlepaddle >= 2.0.0
* 1.0.0
paddlehub >= 2.0.4
初始发布
paddleocr >= 2.0.2
- ```shell
$ hub install Vehicle_License_Plate_Recognition==1.0.0
```
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册