未验证 提交 6ca472e5 编写于 作者: C chenjian 提交者: GitHub

Add ocr modules and update the docs according to template (#1603)

上级 d32cc733
# german_ocr_db_crnn_mobile
|模型名称|german_ocr_db_crnn_mobile|
| :--- | :---: |
|类别|图像-文字识别|
|网络|Differentiable Binarization+CRNN|
|数据集|icdar2015数据集|
|是否支持Fine-tuning|否|
|模型大小|3.8MB|
|最新更新日期|2021-02-26|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/133761772-8c47f25f-0d95-45b4-8075-867dbbd14c86.jpg" width="80%" hspace='10'/> <br />
</p>
- ### 模型介绍
- german_ocr_db_crnn_mobile Module用于识别图片当中的德文。其基于chinese_text_detection_db_mobile检测得到的文本框,继续识别文本框中的德文文字。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个识别德文的轻量级OCR模型,支持直接预测。
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 1.8.0
- paddlehub >= 1.8.0 | [如何安装paddlehub](../../../../docs/docs_ch/get_start/installation.rst)
- shapely
- pyclipper
- ```shell
$ pip install shapely pyclipper
```
- **该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。**
- ### 2、安装
- ```shell
$ hub install german_ocr_db_crnn_mobile
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
$ hub run german_ocr_db_crnn_mobile --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现文字识别模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、代码示例
- ```python
import paddlehub as hub
import cv2
ocr = hub.Module(name="german_ocr_db_crnn_mobile", enable_mkldnn=True) # mkldnn加速仅在CPU下有效
result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
```
- ### 3、API
- ```python
def __init__(text_detector_module=None, enable_mkldnn=False)
```
- 构造GenmanOCRDBCRNNMobile对象
- **参数**
- text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用[chinese_text_detection_db_mobile Module](../chinese_text_detection_db_mobile/)。其作用为检测图片当中的文本。<br/>
- enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
- ```python
def recognize_text(images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9)
```
- 预测API,检测输入图片中的所有德文文本的位置。
- **参数**
- paths (list\[str\]): 图片的路径; <br/>
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\],BGR格式; <br/>
- use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量** <br/>
- box\_thresh (float): 检测文本框置信度的阈值; <br/>
- text\_thresh (float): 识别德文文本置信度的阈值; <br/>
- angle_classification_thresh(float): 文本角度分类置信度的阈值 <br/>
- visualization (bool): 是否将识别结果保存为图片文件; <br/>
- output\_dir (str): 图片的保存路径,默认设为 ocr\_result;
- **返回**
- res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
- data (list\[dict\]): 识别文本结果,列表中每一个元素为 dict,各字段为:
- text(str): 识别得到的文本
- confidence(float): 识别文本结果置信度
- text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标
如果无识别结果则data为\[\]
- save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''
## 四、服务部署
- PaddleHub Serving 可以部署一个目标检测的在线服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m german_ocr_db_crnn_mobile
```
- 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/german_ocr_db_crnn_mobile"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install german_ocr_db_crnn_mobile==1.0.0
```
!
"
$
%
&
'
(
)
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
>
?
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
]
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
£
§
­
²
´
µ
·
º
¼
½
¿
À
Á
Ä
Å
Ç
É
Í
Ï
Ô
Ö
Ø
Ù
Ü
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
í
ï
ñ
ò
ó
ô
ö
ø
ù
ú
û
ü
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import string
class CharacterOps(object):
""" Convert between text-label and text-index """
def __init__(self, config):
self.character_type = config['character_type']
self.loss_type = config['loss_type']
self.max_text_len = config['max_text_length']
if self.character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif self.character_type in [
"ch", 'japan', 'korean', 'french', 'german'
]:
character_dict_path = config['character_dict_path']
add_space = False
if 'use_space_char' in config:
add_space = config['use_space_char']
self.character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if add_space:
self.character_str += " "
dict_character = list(self.character_str)
elif self.character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
else:
self.character_str = None
assert self.character_str is not None, \
"Nonsupport type of the character: {}".format(self.character_str)
self.beg_str = "sos"
self.end_str = "eos"
if self.loss_type == "attention":
dict_character = [self.beg_str, self.end_str] + dict_character
elif self.loss_type == "srn":
dict_character = dict_character + [self.beg_str, self.end_str]
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
text = np.array(text_list)
return text
def decode(self, text_index, is_remove_duplicate=False):
""" convert text-index into text-label. """
char_list = []
char_num = self.get_char_num()
if self.loss_type == "attention":
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
ignored_tokens = [beg_idx, end_idx]
else:
ignored_tokens = [char_num]
for idx in range(len(text_index)):
if text_index[idx] in ignored_tokens:
continue
if is_remove_duplicate:
if idx > 0 and text_index[idx - 1] == text_index[idx]:
continue
char_list.append(self.character[int(text_index[idx])])
text = ''.join(char_list)
return text
def get_char_num(self):
return len(self.character)
def get_beg_end_flag_idx(self, beg_or_end):
if self.loss_type == "attention":
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx"\
% beg_or_end
return idx
else:
err = "error in get_beg_end_flag_idx when using the loss %s"\
% (self.loss_type)
assert False, err
def cal_predicts_accuracy(char_ops,
preds,
preds_lod,
labels,
labels_lod,
is_remove_duplicate=False):
acc_num = 0
img_num = 0
for ino in range(len(labels_lod) - 1):
beg_no = preds_lod[ino]
end_no = preds_lod[ino + 1]
preds_text = preds[beg_no:end_no].reshape(-1)
preds_text = char_ops.decode(preds_text, is_remove_duplicate)
beg_no = labels_lod[ino]
end_no = labels_lod[ino + 1]
labels_text = labels[beg_no:end_no].reshape(-1)
labels_text = char_ops.decode(labels_text, is_remove_duplicate)
img_num += 1
if preds_text == labels_text:
acc_num += 1
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def cal_predicts_accuracy_srn(char_ops,
preds,
labels,
max_text_len,
is_debug=False):
acc_num = 0
img_num = 0
char_num = char_ops.get_char_num()
total_len = preds.shape[0]
img_num = int(total_len / max_text_len)
for i in range(img_num):
cur_label = []
cur_pred = []
for j in range(max_text_len):
if labels[j + i * max_text_len] != int(char_num - 1): #0
cur_label.append(labels[j + i * max_text_len][0])
else:
break
for j in range(max_text_len + 1):
if j < len(cur_label) and preds[j + i * max_text_len][
0] != cur_label[j]:
break
elif j == len(cur_label) and j == max_text_len:
acc_num += 1
break
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(
char_num - 1):
acc_num += 1
break
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def convert_rec_attention_infer_res(preds):
img_num = preds.shape[0]
target_lod = [0]
convert_ids = []
for ino in range(img_num):
end_pos = np.where(preds[ino, :] == 1)[0]
if len(end_pos) <= 1:
text_list = preds[ino, 1:]
else:
text_list = preds[ino, 1:end_pos[1]]
target_lod.append(target_lod[ino] + len(text_list))
convert_ids = convert_ids + list(text_list)
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
def convert_rec_label_to_lod(ori_labels):
img_num = len(ori_labels)
target_lod = [0]
convert_ids = []
for ino in range(img_num):
target_lod.append(target_lod[ino] + len(ori_labels[ino]))
convert_ids = convert_ids + list(ori_labels[ino])
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from german_ocr_db_crnn_mobile.character import CharacterOps
from german_ocr_db_crnn_mobile.utils import base64_to_cv2, draw_ocr, get_image_ext, sorted_boxes
@moduleinfo(
name="german_ocr_db_crnn_mobile",
version="1.0.0",
summary=
"The module can recognize the german texts in an image. Firstly, it will detect the text box positions based on the differentiable_binarization module. Then it recognizes the german texts. ",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class GermanOCRDBCRNNMobile(hub.Module):
def _initialize(self, text_detector_module=None, enable_mkldnn=False, use_angle_classification=False):
"""
initialize with the necessary elements
"""
self.character_dict_path = os.path.join(self.directory, 'assets',
'german_dict.txt')
char_ops_params = {
'character_type': 'german',
'character_dict_path': self.character_dict_path,
'loss_type': 'ctc',
'max_text_length': 25,
'use_space_char': True
}
self.char_ops = CharacterOps(char_ops_params)
self.rec_image_shape = [3, 32, 320]
self._text_detector_module = text_detector_module
self.font_file = os.path.join(self.directory, 'assets', 'german.ttf')
self.enable_mkldnn = enable_mkldnn
self.use_angle_classification = use_angle_classification
self.rec_pretrained_model_path = os.path.join(
self.directory, 'inference_model', 'character_rec')
self.rec_predictor, self.rec_input_tensor, self.rec_output_tensors = self._set_config(
self.rec_pretrained_model_path)
if self.use_angle_classification:
self.cls_pretrained_model_path = os.path.join(
self.directory, 'inference_model', 'angle_cls')
self.cls_predictor, self.cls_input_tensor, self.cls_output_tensors = self._set_config(
self.cls_pretrained_model_path)
def _set_config(self, pretrained_model_path):
"""
predictor config path
"""
model_file_path = os.path.join(pretrained_model_path, 'model')
params_file_path = os.path.join(pretrained_model_path, 'params')
config = AnalysisConfig(model_file_path, params_file_path)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
config.enable_use_gpu(8000, 0)
else:
config.disable_gpu()
if self.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
@property
def text_detector_module(self):
"""
text detect module
"""
if not self._text_detector_module:
self._text_detector_module = hub.Module(
name='chinese_text_detection_db_mobile',
enable_mkldnn=self.enable_mkldnn,
version='1.0.4')
return self._text_detector_module
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
def get_rotate_crop_image(self, img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
def resize_norm_img_rec(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_cls(self, img):
cls_image_shape = [3, 48, 192]
imgC, imgH, imgW = cls_image_shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if cls_image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def recognize_text(self,
images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9):
"""
Get the chinese texts in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
use_gpu (bool): Whether to use gpu.
batch_size(int): the program deals once with one
output_dir (str): The directory to store output images.
visualization (bool): Whether to save image or not.
box_thresh(float): the threshold of the detected text box's confidence
text_thresh(float): the threshold of the chinese text recognition confidence
angle_classification_thresh(float): the threshold of the angle classification confidence
Returns:
res (list): The result of chinese texts and save path of images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
self.use_gpu = use_gpu
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
detection_results = self.text_detector_module.detect_text(
images=predicted_data, use_gpu=self.use_gpu, box_thresh=box_thresh)
print('*'*10)
print(detection_results)
boxes = [
np.array(item['data']).astype(np.float32)
for item in detection_results
]
all_results = []
for index, img_boxes in enumerate(boxes):
original_image = predicted_data[index].copy()
result = {'save_path': ''}
if img_boxes.size == 0:
result['data'] = []
else:
img_crop_list = []
boxes = sorted_boxes(img_boxes)
for num_box in range(len(boxes)):
tmp_box = copy.deepcopy(boxes[num_box])
img_crop = self.get_rotate_crop_image(
original_image, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_classification:
img_crop_list, angle_list = self._classify_text(
img_crop_list,
angle_classification_thresh=angle_classification_thresh)
rec_results = self._recognize_text(img_crop_list)
# if the recognized text confidence score is lower than text_thresh, then drop it
rec_res_final = []
for index, res in enumerate(rec_results):
text, score = res
if score >= text_thresh:
rec_res_final.append({
'text':
text,
'confidence':
float(score),
'text_box_position':
boxes[index].astype(np.int).tolist()
})
result['data'] = rec_res_final
if visualization and result['data']:
result['save_path'] = self.save_result_image(
original_image, boxes, rec_results, output_dir,
text_thresh)
all_results.append(result)
return all_results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.recognize_text(images_decode, **kwargs)
return results
def save_result_image(
self,
original_image,
detection_boxes,
rec_results,
output_dir='ocr_result',
text_thresh=0.5,
):
image = Image.fromarray(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))
txts = [item[0] for item in rec_results]
scores = [item[1] for item in rec_results]
draw_img = draw_ocr(
image,
detection_boxes,
txts,
scores,
font_file=self.font_file,
draw_txt=True,
drop_score=text_thresh)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
ext = get_image_ext(original_image)
saved_name = 'ndarray_{}{}'.format(time.time(), ext)
save_file_path = os.path.join(output_dir, saved_name)
cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
return save_file_path
def _classify_text(self, image_list, angle_classification_thresh=0.9):
img_list = copy.deepcopy(image_list)
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the cls process
indices = np.argsort(np.array(width_list))
cls_res = [['', 0.0]] * img_num
batch_num = 30
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img_cls(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
self.cls_input_tensor.copy_from_cpu(norm_img_batch)
self.cls_predictor.zero_copy_run()
prob_out = self.cls_output_tensors[0].copy_to_cpu()
label_out = self.cls_output_tensors[1].copy_to_cpu()
if len(label_out.shape) != 1:
prob_out, label_out = label_out, prob_out
label_list = ['0', '180']
for rno in range(len(label_out)):
label_idx = label_out[rno]
score = prob_out[rno][label_idx]
label = label_list[label_idx]
cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > angle_classification_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1)
return img_list, cls_res
def _recognize_text(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
rec_res = [['', 0.0]] * img_num
batch_num = 30
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img_rec(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch, axis=0)
norm_img_batch = norm_img_batch.copy()
self.rec_input_tensor.copy_from_cpu(norm_img_batch)
self.rec_predictor.zero_copy_run()
rec_idx_batch = self.rec_output_tensors[0].copy_to_cpu()
rec_idx_lod = self.rec_output_tensors[0].lod()[0]
predict_batch = self.rec_output_tensors[1].copy_to_cpu()
predict_lod = self.rec_output_tensors[1].lod()[0]
for rno in range(len(rec_idx_lod) - 1):
beg = rec_idx_lod[rno]
end = rec_idx_lod[rno + 1]
rec_idx_tmp = rec_idx_batch[beg:end, 0]
preds_text = self.char_ops.decode(rec_idx_tmp)
beg = predict_lod[rno]
end = predict_lod[rno + 1]
probs = predict_batch[beg:end, :]
ind = np.argmax(probs, axis=1)
blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0]
if len(valid_ind) == 0:
continue
score = np.mean(probs[valid_ind, ind[valid_ind]])
# rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
return rec_res
def save_inference_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
detector_dir = os.path.join(dirname, 'text_detector')
classifier_dir = os.path.join(dirname, 'angle_classifier')
recognizer_dir = os.path.join(dirname, 'text_recognizer')
self._save_detector_model(detector_dir, model_filename, params_filename,
combined)
if self.use_angle_classification:
self._save_classifier_model(classifier_dir, model_filename,
params_filename, combined)
self._save_recognizer_model(recognizer_dir, model_filename,
params_filename, combined)
logger.info("The inference model has been saved in the path {}".format(
os.path.realpath(dirname)))
def _save_detector_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
self.text_detector_module.save_inference_model(
dirname, model_filename, params_filename, combined)
def _save_recognizer_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model_file_path = os.path.join(self.rec_pretrained_model_path, 'model')
params_file_path = os.path.join(self.rec_pretrained_model_path,
'params')
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.rec_pretrained_model_path,
model_filename=model_file_path,
params_filename=params_file_path,
executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
def _save_classifier_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model_file_path = os.path.join(self.cls_pretrained_model_path, 'model')
params_file_path = os.path.join(self.cls_pretrained_model_path,
'params')
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.cls_pretrained_model_path,
model_filename=model_file_path,
params_filename=params_file_path,
executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
@runnable
def run_cmd(self, argvs):
"""
Run as a command
"""
self.parser = argparse.ArgumentParser(
description="Run the %s module." % self.name,
prog='hub run %s' % self.name,
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(
title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options",
description=
"Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.recognize_text(
paths=[args.input_path],
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
return results
def add_module_config_arg(self):
"""
Add the command config options
"""
self.arg_config_group.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument(
'--output_dir',
type=str,
default='ocr_result',
help="The directory to save output images.")
self.arg_config_group.add_argument(
'--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options
"""
self.arg_input_group.add_argument(
'--input_path', type=str, default=None, help="diretory to image")
if __name__ == '__main__':
ocr = GermanOCRDBCRNNMobile(enable_mkldnn=False, use_angle_classification=True)
image_path = [
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/ger_1.jpg',
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/12.jpg',
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/test_image.jpg'
]
res = ocr.recognize_text(paths=image_path, visualization=True)
ocr.save_inference_model('save')
print(res)
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from PIL import Image, ImageDraw, ImageFont
import base64
import cv2
import numpy as np
def draw_ocr(image,
boxes,
txts,
scores,
font_file,
draw_txt=True,
drop_score=0.5):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
draw_txt(bool): whether draw text or not
drop_score(float): only scores greater than drop_threshold will be visualized
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score or math.isnan(score):
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if draw_txt:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts,
scores,
font_file,
img_h=img.shape[0],
img_w=600,
threshold=drop_score)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def text_visual(texts, scores, font_file, img_h=400, img_w=600, threshold=0.):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype(font_file, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def resize_img(img, input_size=600):
img = np.array(img)
im_shape = img.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def get_image_ext(image):
if image.shape[2] == 4:
return ".png"
return ".jpg"
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
# japan_ocr_db_crnn_mobile
|模型名称|japan_ocr_db_crnn_mobile|
| :--- | :---: |
|类别|图像-文字识别|
|网络|Differentiable Binarization+CRNN|
|数据集|icdar2015数据集|
|是否支持Fine-tuning|否|
|模型大小|8MB|
|最新更新日期|2021-04-15|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/133761650-91f24c1e-f437-47b1-8cfb-a074e7150ff5.jpg" width='80%' hspace='10'/> <br />
</p>
- ### 模型介绍
- japan_ocr_db_crnn_mobile Module用于识别图片当中的日文。其基于chinese_text_detection_db_mobile检测得到的文本框,继续识别文本框中的日文文字。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个识别日文的轻量级OCR模型,支持直接预测。
## 二、安装
- ### 1、环境依赖
- paddlepaddle >= 1.8.0
- paddlehub >= 1.8.0 | [如何安装paddlehub](../../../../docs/docs_ch/get_start/installation.rst)
- shapely
- pyclipper
- ```shell
$ pip install shapely pyclipper
```
- **该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。**
- ### 2、安装
- ```shell
$ hub install japan_ocr_db_crnn_mobile
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
$ hub run japan_ocr_db_crnn_mobile --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现文字识别模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、代码示例
- ```python
import paddlehub as hub
import cv2
ocr = hub.Module(name="japan_ocr_db_crnn_mobile", enable_mkldnn=True) # mkldnn加速仅在CPU下有效
result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
```
- ### 3、API
- ```python
def __init__(text_detector_module=None, enable_mkldnn=False)
```
- 构造JapanOCRDBCRNNMobile对象
- **参数**
- text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用[chinese_text_detection_db_mobile Module](../chinese_text_detection_db_mobile/)。其作用为检测图片当中的文本。<br/>
- enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
- ```python
def recognize_text(images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9)
```
- 预测API,检测输入图片中的所有日文文本的位置。
- **参数**
- paths (list\[str\]): 图片的路径; <br/>
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\],BGR格式; <br/>
- use\_gpu (bool): 是否使用 GPU;**若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量** <br/>
- output\_dir (str): 图片的保存路径,默认设为 ocr\_result; <br/>
- box\_thresh (float): 检测文本框置信度的阈值; <br/>
- text\_thresh (float): 识别日文文本置信度的阈值; <br/>
- angle_classification_thresh(float): 文本角度分类置信度的阈值 <br/>
- visualization (bool): 是否将识别结果保存为图片文件。
- **返回**
- res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
- data (list\[dict\]): 识别文本结果,列表中每一个元素为 dict,各字段为:
- text(str): 识别得到的文本
- confidence(float): 识别文本结果置信度
- text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标
如果无识别结果则data为\[\]
- save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''
## 四、服务部署
- PaddleHub Serving 可以部署一个目标检测的在线服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m japan_ocr_db_crnn_mobile
```
- 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/japan_ocr_db_crnn_mobile"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install japan_ocr_db_crnn_mobile==1.0.0
```
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
]
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
©
°
²
´
½
Á
Ä
Å
Ç
È
É
Í
Ó
Ö
×
Ü
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
í
ð
ñ
ò
ó
ô
õ
ö
ø
ú
û
ü
ý
ā
ă
ą
ć
Č
č
đ
ē
ė
ę
ğ
ī
ı
Ł
ł
ń
ň
ō
ř
Ş
ş
Š
š
ţ
ū
ż
Ž
ž
Ș
ș
ț
Δ
α
λ
μ
φ
Г
О
а
в
л
о
р
с
т
я
 
丿
使
便
姿
婿
宿
寿
尿
廿
忿
椿
槿
橿
殿
沿
湿
滿
漿
禿
稿
竿
簿
綿
耀
西
調
谿
貿
輿
退
駿
鹿
麿
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import string
class CharacterOps(object):
""" Convert between text-label and text-index """
def __init__(self, config):
self.character_type = config['character_type']
self.loss_type = config['loss_type']
self.max_text_len = config['max_text_length']
if self.character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif self.character_type in [
"ch", 'japan', 'korean', 'french', 'german'
]:
character_dict_path = config['character_dict_path']
add_space = False
if 'use_space_char' in config:
add_space = config['use_space_char']
self.character_str = ""
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if add_space:
self.character_str += " "
dict_character = list(self.character_str)
elif self.character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
else:
self.character_str = None
assert self.character_str is not None, \
"Nonsupport type of the character: {}".format(self.character_str)
self.beg_str = "sos"
self.end_str = "eos"
if self.loss_type == "attention":
dict_character = [self.beg_str, self.end_str] + dict_character
elif self.loss_type == "srn":
dict_character = dict_character + [self.beg_str, self.end_str]
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
continue
text_list.append(self.dict[char])
text = np.array(text_list)
return text
def decode(self, text_index, is_remove_duplicate=False):
""" convert text-index into text-label. """
char_list = []
char_num = self.get_char_num()
if self.loss_type == "attention":
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
ignored_tokens = [beg_idx, end_idx]
else:
ignored_tokens = [char_num]
for idx in range(len(text_index)):
if text_index[idx] in ignored_tokens:
continue
if is_remove_duplicate:
if idx > 0 and text_index[idx - 1] == text_index[idx]:
continue
char_list.append(self.character[int(text_index[idx])])
text = ''.join(char_list)
return text
def get_char_num(self):
return len(self.character)
def get_beg_end_flag_idx(self, beg_or_end):
if self.loss_type == "attention":
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx"\
% beg_or_end
return idx
else:
err = "error in get_beg_end_flag_idx when using the loss %s"\
% (self.loss_type)
assert False, err
def cal_predicts_accuracy(char_ops,
preds,
preds_lod,
labels,
labels_lod,
is_remove_duplicate=False):
acc_num = 0
img_num = 0
for ino in range(len(labels_lod) - 1):
beg_no = preds_lod[ino]
end_no = preds_lod[ino + 1]
preds_text = preds[beg_no:end_no].reshape(-1)
preds_text = char_ops.decode(preds_text, is_remove_duplicate)
beg_no = labels_lod[ino]
end_no = labels_lod[ino + 1]
labels_text = labels[beg_no:end_no].reshape(-1)
labels_text = char_ops.decode(labels_text, is_remove_duplicate)
img_num += 1
if preds_text == labels_text:
acc_num += 1
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def cal_predicts_accuracy_srn(char_ops,
preds,
labels,
max_text_len,
is_debug=False):
acc_num = 0
img_num = 0
char_num = char_ops.get_char_num()
total_len = preds.shape[0]
img_num = int(total_len / max_text_len)
for i in range(img_num):
cur_label = []
cur_pred = []
for j in range(max_text_len):
if labels[j + i * max_text_len] != int(char_num - 1): #0
cur_label.append(labels[j + i * max_text_len][0])
else:
break
for j in range(max_text_len + 1):
if j < len(cur_label) and preds[j + i * max_text_len][
0] != cur_label[j]:
break
elif j == len(cur_label) and j == max_text_len:
acc_num += 1
break
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(
char_num - 1):
acc_num += 1
break
acc = acc_num * 1.0 / img_num
return acc, acc_num, img_num
def convert_rec_attention_infer_res(preds):
img_num = preds.shape[0]
target_lod = [0]
convert_ids = []
for ino in range(img_num):
end_pos = np.where(preds[ino, :] == 1)[0]
if len(end_pos) <= 1:
text_list = preds[ino, 1:]
else:
text_list = preds[ino, 1:end_pos[1]]
target_lod.append(target_lod[ino] + len(text_list))
convert_ids = convert_ids + list(text_list)
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
def convert_rec_label_to_lod(ori_labels):
img_num = len(ori_labels)
target_lod = [0]
convert_ids = []
for ino in range(img_num):
target_lod.append(target_lod[ino] + len(ori_labels[ino]))
convert_ids = convert_ids + list(ori_labels[ino])
convert_ids = np.array(convert_ids)
convert_ids = convert_ids.reshape((-1, 1))
return convert_ids, target_lod
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from japan_ocr_db_crnn_mobile.character import CharacterOps
from japan_ocr_db_crnn_mobile.utils import base64_to_cv2, draw_ocr, get_image_ext, sorted_boxes
@moduleinfo(
name="japan_ocr_db_crnn_mobile",
version="1.0.0",
summary=
"The module can recognize the japan texts in an image. Firstly, it will detect the text box positions based on the differentiable_binarization module. Then it recognizes the german texts. ",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/text_recognition")
class JapanOCRDBCRNNMobile(hub.Module):
def _initialize(self, text_detector_module=None, enable_mkldnn=False, use_angle_classification=False):
"""
initialize with the necessary elements
"""
self.character_dict_path = os.path.join(self.directory, 'assets',
'japan_dict.txt')
char_ops_params = {
'character_type': 'japan',
'character_dict_path': self.character_dict_path,
'loss_type': 'ctc',
'max_text_length': 25,
'use_space_char': True
}
self.char_ops = CharacterOps(char_ops_params)
self.rec_image_shape = [3, 32, 320]
self._text_detector_module = text_detector_module
self.font_file = os.path.join(self.directory, 'assets', 'japan.ttc')
self.enable_mkldnn = enable_mkldnn
self.use_angle_classification = use_angle_classification
self.rec_pretrained_model_path = os.path.join(
self.directory, 'inference_model', 'character_rec')
self.rec_predictor, self.rec_input_tensor, self.rec_output_tensors = self._set_config(
self.rec_pretrained_model_path)
if self.use_angle_classification:
self.cls_pretrained_model_path = os.path.join(
self.directory, 'inference_model', 'angle_cls')
self.cls_predictor, self.cls_input_tensor, self.cls_output_tensors = self._set_config(
self.cls_pretrained_model_path)
def _set_config(self, pretrained_model_path):
"""
predictor config path
"""
model_file_path = os.path.join(pretrained_model_path, 'model')
params_file_path = os.path.join(pretrained_model_path, 'params')
config = AnalysisConfig(model_file_path, params_file_path)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
config.enable_use_gpu(8000, 0)
else:
config.disable_gpu()
if self.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
@property
def text_detector_module(self):
"""
text detect module
"""
if not self._text_detector_module:
self._text_detector_module = hub.Module(
name='chinese_text_detection_db_mobile',
enable_mkldnn=self.enable_mkldnn,
version='1.0.4')
return self._text_detector_module
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file.".format(img_path)
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
def get_rotate_crop_image(self, img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
def resize_norm_img_rec(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_cls(self, img):
cls_image_shape = [3, 48, 192]
imgC, imgH, imgW = cls_image_shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if cls_image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def recognize_text(self,
images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9):
"""
Get the chinese texts in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
use_gpu (bool): Whether to use gpu.
batch_size(int): the program deals once with one
output_dir (str): The directory to store output images.
visualization (bool): Whether to save image or not.
box_thresh(float): the threshold of the detected text box's confidence
text_thresh(float): the threshold of the chinese text recognition confidence
angle_classification_thresh(float): the threshold of the angle classification confidence
Returns:
res (list): The result of chinese texts and save path of images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
self.use_gpu = use_gpu
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
detection_results = self.text_detector_module.detect_text(
images=predicted_data, use_gpu=self.use_gpu, box_thresh=box_thresh)
print('*'*10)
print(detection_results)
boxes = [
np.array(item['data']).astype(np.float32)
for item in detection_results
]
all_results = []
for index, img_boxes in enumerate(boxes):
original_image = predicted_data[index].copy()
result = {'save_path': ''}
if img_boxes.size == 0:
result['data'] = []
else:
img_crop_list = []
boxes = sorted_boxes(img_boxes)
for num_box in range(len(boxes)):
tmp_box = copy.deepcopy(boxes[num_box])
img_crop = self.get_rotate_crop_image(
original_image, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_classification:
img_crop_list, angle_list = self._classify_text(
img_crop_list,
angle_classification_thresh=angle_classification_thresh)
rec_results = self._recognize_text(img_crop_list)
# if the recognized text confidence score is lower than text_thresh, then drop it
rec_res_final = []
for index, res in enumerate(rec_results):
text, score = res
if score >= text_thresh:
rec_res_final.append({
'text':
text,
'confidence':
float(score),
'text_box_position':
boxes[index].astype(np.int).tolist()
})
result['data'] = rec_res_final
if visualization and result['data']:
result['save_path'] = self.save_result_image(
original_image, boxes, rec_results, output_dir,
text_thresh)
all_results.append(result)
return all_results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.recognize_text(images_decode, **kwargs)
return results
def save_result_image(
self,
original_image,
detection_boxes,
rec_results,
output_dir='ocr_result',
text_thresh=0.5,
):
image = Image.fromarray(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))
txts = [item[0] for item in rec_results]
scores = [item[1] for item in rec_results]
draw_img = draw_ocr(
image,
detection_boxes,
txts,
scores,
font_file=self.font_file,
draw_txt=True,
drop_score=text_thresh)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
ext = get_image_ext(original_image)
saved_name = 'ndarray_{}{}'.format(time.time(), ext)
save_file_path = os.path.join(output_dir, saved_name)
cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
return save_file_path
def _classify_text(self, image_list, angle_classification_thresh=0.9):
img_list = copy.deepcopy(image_list)
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the cls process
indices = np.argsort(np.array(width_list))
cls_res = [['', 0.0]] * img_num
batch_num = 30
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img_cls(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
self.cls_input_tensor.copy_from_cpu(norm_img_batch)
self.cls_predictor.zero_copy_run()
prob_out = self.cls_output_tensors[0].copy_to_cpu()
label_out = self.cls_output_tensors[1].copy_to_cpu()
if len(label_out.shape) != 1:
prob_out, label_out = label_out, prob_out
label_list = ['0', '180']
for rno in range(len(label_out)):
label_idx = label_out[rno]
score = prob_out[rno][label_idx]
label = label_list[label_idx]
cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > angle_classification_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1)
return img_list, cls_res
def _recognize_text(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
rec_res = [['', 0.0]] * img_num
batch_num = 30
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img_rec(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch, axis=0)
norm_img_batch = norm_img_batch.copy()
self.rec_input_tensor.copy_from_cpu(norm_img_batch)
self.rec_predictor.zero_copy_run()
rec_idx_batch = self.rec_output_tensors[0].copy_to_cpu()
rec_idx_lod = self.rec_output_tensors[0].lod()[0]
predict_batch = self.rec_output_tensors[1].copy_to_cpu()
predict_lod = self.rec_output_tensors[1].lod()[0]
for rno in range(len(rec_idx_lod) - 1):
beg = rec_idx_lod[rno]
end = rec_idx_lod[rno + 1]
rec_idx_tmp = rec_idx_batch[beg:end, 0]
preds_text = self.char_ops.decode(rec_idx_tmp)
beg = predict_lod[rno]
end = predict_lod[rno + 1]
probs = predict_batch[beg:end, :]
ind = np.argmax(probs, axis=1)
blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0]
if len(valid_ind) == 0:
continue
score = np.mean(probs[valid_ind, ind[valid_ind]])
# rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
return rec_res
def save_inference_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
detector_dir = os.path.join(dirname, 'text_detector')
classifier_dir = os.path.join(dirname, 'angle_classifier')
recognizer_dir = os.path.join(dirname, 'text_recognizer')
self._save_detector_model(detector_dir, model_filename, params_filename,
combined)
if self.use_angle_classification:
self._save_classifier_model(classifier_dir, model_filename,
params_filename, combined)
self._save_recognizer_model(recognizer_dir, model_filename,
params_filename, combined)
logger.info("The inference model has been saved in the path {}".format(
os.path.realpath(dirname)))
def _save_detector_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
self.text_detector_module.save_inference_model(
dirname, model_filename, params_filename, combined)
def _save_recognizer_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model_file_path = os.path.join(self.rec_pretrained_model_path, 'model')
params_file_path = os.path.join(self.rec_pretrained_model_path,
'params')
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.rec_pretrained_model_path,
model_filename=model_file_path,
params_filename=params_file_path,
executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
def _save_classifier_model(self,
dirname,
model_filename=None,
params_filename=None,
combined=True):
if combined:
model_filename = "__model__" if not model_filename else model_filename
params_filename = "__params__" if not params_filename else params_filename
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model_file_path = os.path.join(self.cls_pretrained_model_path, 'model')
params_file_path = os.path.join(self.cls_pretrained_model_path,
'params')
program, feeded_var_names, target_vars = fluid.io.load_inference_model(
dirname=self.cls_pretrained_model_path,
model_filename=model_file_path,
params_filename=params_file_path,
executor=exe)
fluid.io.save_inference_model(
dirname=dirname,
main_program=program,
executor=exe,
feeded_var_names=feeded_var_names,
target_vars=target_vars,
model_filename=model_filename,
params_filename=params_filename)
@runnable
def run_cmd(self, argvs):
"""
Run as a command
"""
self.parser = argparse.ArgumentParser(
description="Run the %s module." % self.name,
prog='hub run %s' % self.name,
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(
title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options",
description=
"Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.recognize_text(
paths=[args.input_path],
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
return results
def add_module_config_arg(self):
"""
Add the command config options
"""
self.arg_config_group.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument(
'--output_dir',
type=str,
default='ocr_result',
help="The directory to save output images.")
self.arg_config_group.add_argument(
'--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options
"""
self.arg_input_group.add_argument(
'--input_path', type=str, default=None, help="diretory to image")
if __name__ == '__main__':
ocr = JapanOCRDBCRNNMobile(enable_mkldnn=False, use_angle_classification=True)
image_path = [
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/ger_1.jpg',
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/12.jpg',
'/mnt/zhangxuefei/PaddleOCR/doc/imgs/test_image.jpg'
]
res = ocr.recognize_text(paths=image_path, visualization=True)
ocr.save_inference_model('save')
print(res)
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from PIL import Image, ImageDraw, ImageFont
import base64
import cv2
import numpy as np
def draw_ocr(image,
boxes,
txts,
scores,
font_file,
draw_txt=True,
drop_score=0.5):
"""
Visualize the results of OCR detection and recognition
args:
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
draw_txt(bool): whether draw text or not
drop_score(float): only scores greater than drop_threshold will be visualized
return(array):
the visualized img
"""
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score or math.isnan(score):
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
if draw_txt:
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
txts,
scores,
font_file,
img_h=img.shape[0],
img_w=600,
threshold=drop_score)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
return img
return image
def text_visual(texts, scores, font_file, img_h=400, img_w=600, threshold=0.):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
font = ImageFont.truetype(font_file, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
def resize_img(img, input_size=600):
img = np.array(img)
im_shape = img.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def get_image_ext(image):
if image.shape[2] == 4:
return ".png"
return ".jpg"
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def base64_to_cv2(b64str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
## 概述 # Vehicle_License_Plate_Recognition
Vehicle_License_Plate_Recognition 是一个基于 CCPD 数据集训练的车牌识别模型,能够检测出图像中车牌位置并识别其中的车牌文字信息,大致的模型结构如下,分为检测车牌和文字识别两个模块:
![](https://ai-studio-static-online.cdn.bcebos.com/35a3dab32ac948549de41afba7b51a5770d3f872d60b437d891f359a5cef8052) |模型名称|Vehicle_License_Plate_Recognition|
| :--- | :---: |
|类别|图像 - 文字识别|
|网络|-|
|数据集|CCPD|
|是否支持Fine-tuning|否|
|模型大小|111MB|
|最新更新日期|2021-03-22|
|数据指标|-|
## API
```python
def plate_recognition(images)
```
车牌识别 API
**参数** ## 一、模型基本信息
* images(str / ndarray / list(str) / list(ndarray)):待识别图像的路径或者图像的 Ndarray(RGB)
**返回** - ### 应用效果展示
* results(list(dict{'license', 'bbox'})): 识别到的车牌信息列表,包含车牌的位置坐标和车牌号码 - 样例结果示例:
<p align="center">
<img src="https://ai-studio-static-online.cdn.bcebos.com/35a3dab32ac948549de41afba7b51a5770d3f872d60b437d891f359a5cef8052" width = "450" height = "300" hspace='10'/> <br />
</p>
**代码示例** - ### 模型介绍
```python
import paddlehub as hub
# 加载模型 - Vehicle_License_Plate_Recognition是一个基于CCPD数据集训练的车牌识别模型,能够检测出图像中车牌位置并识别其中的车牌文字信息。
model = hub.Module(name='Vehicle_License_Plate_Recognition')
# 车牌识别
result = model.plate_recognition("test.jpg")
# 打印结果 ## 二、安装
print(result)
```
[{'license': '苏B92912', 'bbox': [[131.0, 251.0], [368.0, 253.0], [367.0, 338.0], [131.0, 336.0]]}]
## 服务部署 - ### 1、环境依赖
PaddleHub Serving 可以部署一个在线车牌识别服务。 - paddlepaddle >= 2.0.0
## 第一步:启动PaddleHub Serving - paddlehub >= 2.0.4
运行启动命令: - paddleocr >= 2.0.2
```shell
$ hub serving start --modules Vehicle_License_Plate_Recognition
```
这样就完成了一个车牌识别的在线服务API的部署,默认端口号为8866。 - ### 2、安装
**NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。 - ```shell
$ hub install Vehicle_License_Plate_Recognition
```
## 三、模型API预测
## 第二步:发送预测请求 - ### 1、代码示例
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果 - ```python
import paddlehub as hub
import cv2
```python model = hub.Module(name="Vehicle_License_Plate_Recognition")
import requests result = model.plate_recognition(images=[cv2.imread('/PATH/TO/IMAGE')])
import json ```
import cv2
import base64
- ### 2、API
def cv2_to_base64(image): - ```python
data = cv2.imencode('.jpg', image)[1] def plate_recognition(images)
return base64.b64encode(data.tostring()).decode('utf8') ```
- 车牌识别 API。
# 发送HTTP请求 - **参数**
data = {'images':[cv2_to_base64(cv2.imread("test.jpg"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/Vehicle_License_Plate_Recognition"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果 - images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];<br/>
print(r.json()["results"])
```
[{'bbox': [[260.0, 100.0], [546.0, 104.0], [544.0, 200.0], [259.0, 196.0]], 'license': '苏DS0000'}] - **返回**
- results(list(dict{'license', 'bbox'})): 识别到的车牌信息列表,包含车牌的位置坐标和车牌号码
## 查看代码
https://github.com/jm12138/License_plate_recognition
## 依赖 ## 四、服务部署
paddlepaddle >= 2.0.0
paddlehub >= 2.0.4 - PaddleHub Serving可以部署一个在线车牌识别服务。
paddleocr >= 2.0.2 - ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m Vehicle_License_Plate_Recognition
```
- 这样就完成了一个车牌识别的在线服务API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/Vehicle_License_Plate_Recognition"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
```
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install Vehicle_License_Plate_Recognition==1.0.0
```
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册