Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
69788b6d
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
大约 1 年 前同步成功
通知
282
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69788b6d
编写于
10月 14, 2020
作者:
W
wuzewu
提交者:
GitHub
10月 14, 2020
浏览文件
操作
浏览文件
下载
差异文件
update resnet50_vd_10w
上级
6405d834
725f538a
变更
7
展开全部
显示空白变更内容
内联
并排
Showing
7 changed file
with
239 addition
and
1598 deletion
+239
-1598
hub_module/modules/image/classification/resnet50_vd_10w/README.md
...le/modules/image/classification/resnet50_vd_10w/README.md
+0
-85
hub_module/modules/image/classification/resnet50_vd_10w/__init__.py
.../modules/image/classification/resnet50_vd_10w/__init__.py
+0
-0
hub_module/modules/image/classification/resnet50_vd_10w/data_feed.py
...modules/image/classification/resnet50_vd_10w/data_feed.py
+0
-84
hub_module/modules/image/classification/resnet50_vd_10w/label_list.txt
...dules/image/classification/resnet50_vd_10w/label_list.txt
+0
-1000
hub_module/modules/image/classification/resnet50_vd_10w/module.py
...le/modules/image/classification/resnet50_vd_10w/module.py
+239
-125
hub_module/modules/image/classification/resnet50_vd_10w/processor.py
...modules/image/classification/resnet50_vd_10w/processor.py
+0
-55
hub_module/modules/image/classification/resnet50_vd_10w/resnet_vd.py
...modules/image/classification/resnet50_vd_10w/resnet_vd.py
+0
-249
未找到文件。
hub_module/modules/image/classification/resnet50_vd_10w/README.md
已删除
100644 → 0
浏览文件 @
6405d834
<p
align=
"center"
>
<img
src=
"http://bj.bcebos.com/ibox-thumbnail98/77fa9b7003e4665867855b2b65216519?authorization=bce-auth-v1%2Ffbe74140929444858491fbf2b6bc0935%2F2020-04-08T11%3A05%3A10Z%2F1800%2F%2F1df0ecb4a52adefeae240c9e2189e8032560333e399b3187ef1a76e4ffa5f19f"
hspace=
'5'
width=
800/
>
<br
/>
ResNet 系列的网络结构
</p>
模型的详情可参考
[
论文
](
https://arxiv.org/pdf/1812.01187.pdf
)
## API
```
python
def
get_expected_image_width
()
```
返回预处理的图片宽度,也就是224。
```
python
def
get_expected_image_height
()
```
返回预处理的图片高度,也就是224。
```
python
def
get_pretrained_images_mean
()
```
返回预处理的图片均值,也就是
\[
0.485, 0.456, 0.406
\]
。
```
python
def
get_pretrained_images_std
()
```
返回预处理的图片标准差,也就是
\[
0.229, 0.224, 0.225
\]
。
```
python
def
context
(
trainable
=
True
,
pretrained
=
True
)
```
**参数**
*
trainable (bool): 计算图的参数是否为可训练的;
*
pretrained (bool): 是否加载默认的预训练模型。
**返回**
*
inputs (dict): 计算图的输入,key 为 'image', value 为图片的张量;
*
outputs (dict): 计算图的输出,key 为 'feature
\_
map', value为全连接层前面的那个张量。
*
context
\_
prog(fluid.Program): 计算图,用于迁移学习。
```
python
def
save_inference_model
(
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
)
```
将模型保存到指定路径。
**参数**
*
dirname: 存在模型的目录名称
*
model_filename: 模型文件名称,默认为
\_\_
model
\_\_
*
params_filename: 参数文件名称,默认为
\_\_
params
\_\_
(仅当
`combined`
为True时生效)
*
combined: 是否将参数保存到统一的一个文件中
## 代码示例
```
python
import
paddlehub
as
hub
import
cv2
classifier
=
hub
.
Module
(
name
=
"resnet50_vd_10w"
)
input_dict
,
output_dict
,
program
=
classifier
.
context
(
trainable
=
True
)
```
### 查看代码
[
PaddleClas
](
https://github.com/PaddlePaddle/PaddleClas
)
### 依赖
paddlepaddle >= 1.6.2
paddlehub >= 1.6.0
hub_module/modules/image/classification/resnet50_vd_10w/__init__.py
已删除
100644 → 0
浏览文件 @
6405d834
hub_module/modules/image/classification/resnet50_vd_10w/data_feed.py
已删除
100644 → 0
浏览文件 @
6405d834
# coding=utf-8
import
os
import
time
from
collections
import
OrderedDict
import
cv2
import
numpy
as
np
from
PIL
import
Image
__all__
=
[
'reader'
]
DATA_DIM
=
224
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
process_image
(
img
):
img
=
resize_short
(
img
,
target_size
=
256
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
True
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img
-=
img_mean
img
/=
img_std
return
img
def
reader
(
images
=
None
,
paths
=
None
):
"""
Preprocess to yield image.
Args:
images (list[numpy.ndarray]): images data, shape of each is [H, W, C].
paths (list[str]): paths to images.
Yield:
each (collections.OrderedDict): info of original image, preprocessed image.
"""
component
=
list
()
if
paths
:
for
im_path
in
paths
:
each
=
OrderedDict
()
assert
os
.
path
.
isfile
(
im_path
),
"The {} isn't a valid file path."
.
format
(
im_path
)
each
[
'org_im_path'
]
=
im_path
each
[
'org_im'
]
=
Image
.
open
(
im_path
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
if
images
is
not
None
:
assert
type
(
images
),
"images is a list."
for
im
in
images
:
each
=
OrderedDict
()
each
[
'org_im'
]
=
Image
.
fromarray
(
im
[:,
:,
::
-
1
])
each
[
'org_im_path'
]
=
'ndarray_time={}'
.
format
(
round
(
time
.
time
(),
6
)
*
1e6
)
each
[
'org_im_width'
],
each
[
'org_im_height'
]
=
each
[
'org_im'
].
size
component
.
append
(
each
)
for
element
in
component
:
element
[
'image'
]
=
process_image
(
element
[
'org_im'
])
yield
element
hub_module/modules/image/classification/resnet50_vd_10w/label_list.txt
已删除
100644 → 0
浏览文件 @
6405d834
此差异已折叠。
点击以展开。
hub_module/modules/image/classification/resnet50_vd_10w/module.py
浏览文件 @
69788b6d
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
import
ast
import
argparse
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
math
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddlehub
as
hub
from
paddle.fluid.core
import
PaddleTensor
,
AnalysisConfig
,
create_paddle_predictor
from
paddlehub.module.module
import
moduleinfo
,
runnable
,
serving
from
paddlehub.common.paddle_helper
import
add_vars_prefix
from
resnet50_vd_10w.processor
import
postprocess
,
base64_to_cv2
from
resnet50_vd_10w.data_feed
import
reader
from
resnet50_vd_10w.resnet_vd
import
ResNet50_vd
import
paddle
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2d
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2d
,
MaxPool2d
,
AvgPool2d
from
paddle.nn.initializer
import
Uniform
from
paddlehub.module.module
import
moduleinfo
from
paddlehub.module.cv_module
import
ImageClassifierModule
class
ConvBNLayer
(
nn
.
Layer
):
"""Basic conv bn layer."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
filter_size
:
int
,
stride
:
int
=
1
,
groups
:
int
=
1
,
is_vd_mode
:
bool
=
False
,
act
:
str
=
None
,
name
:
str
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2d
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
if
self
.
is_vd_mode
:
inputs
=
self
.
_pool2d_avg
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
BottleneckBlock
(
nn
.
Layer
):
"""Bottleneck Block for ResNet50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
return
y
class
BasicBlock
(
nn
.
Layer
):
"""Basic block for ResNet50_vd."""
def
__init__
(
self
,
num_channels
:
int
,
num_filters
:
int
,
stride
:
int
,
shortcut
:
bool
=
True
,
if_first
:
bool
=
False
,
name
:
str
=
None
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
stride
=
stride
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
paddle
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
return
y
@
moduleinfo
(
name
=
"resnet50_vd_10w"
,
type
=
"CV/image_classification"
,
@
moduleinfo
(
name
=
"resnet50_vd_10w"
,
type
=
"CV/classification"
,
author
=
"paddlepaddle"
,
author_email
=
"paddle-dev@baidu.com"
,
summary
=
"ResNet50vd is a image classfication model, this module is trained with Baidu's self-built dataset with 100,000 categories."
,
version
=
"1.0.0"
)
class
ResNet50vd
(
hub
.
Module
):
def
_initialize
(
self
):
self
.
default_pretrained_model_path
=
os
.
path
.
join
(
self
.
directory
,
"model"
)
def
get_expected_image_width
(
self
):
return
224
def
get_expected_image_height
(
self
):
return
224
def
get_pretrained_images_mean
(
self
):
im_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
(
1
,
3
)
return
im_mean
def
get_pretrained_images_std
(
self
):
im_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
(
1
,
3
)
return
im_std
def
context
(
self
,
trainable
=
True
,
pretrained
=
True
):
"""context for transfer learning.
Args:
trainable (bool): Set parameters in program to be trainable.
pretrained (bool) : Whether to load pretrained model.
Returns:
inputs (dict): key is 'image', corresponding vaule is image tensor.
outputs (dict): key is 'feature_map', corresponding value is the result of the layer before the fully connected layer.
context_prog (fluid.Program): program for transfer learning.
"""
context_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
context_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
],
dtype
=
"float32"
)
resnet_vd
=
ResNet50_vd
()
feature_map
=
resnet_vd
.
net
(
input
=
image
)
name_prefix
=
'@HUB_{}@'
.
format
(
self
.
name
)
inputs
=
{
'image'
:
name_prefix
+
image
.
name
}
outputs
=
{
'feature_map'
:
name_prefix
+
feature_map
.
name
}
add_vars_prefix
(
context_prog
,
name_prefix
)
add_vars_prefix
(
startup_prog
,
name_prefix
)
global_vars
=
context_prog
.
global_block
().
vars
inputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
inputs
.
items
()
}
outputs
=
{
key
:
global_vars
[
value
]
for
key
,
value
in
outputs
.
items
()
}
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# pretrained
if
pretrained
:
def
_if_exist
(
var
):
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
self
.
default_pretrained_model_path
,
var
.
name
))
return
b
fluid
.
io
.
load_vars
(
exe
,
self
.
default_pretrained_model_path
,
context_prog
,
predicate
=
_if_exist
)
author_email
=
""
,
summary
=
"resnet50_vd_imagenet_ssld is a classification model, "
"this module is trained with Baidu open sourced dataset."
,
version
=
"1.1.0"
,
meta
=
ImageClassifierModule
)
class
ResNet50_vd
(
nn
.
Layer
):
"""ResNet50_vd model."""
def
__init__
(
self
,
class_dim
:
int
=
1000
,
load_checkpoint
:
str
=
None
):
super
(
ResNet50_vd
,
self
).
__init__
()
self
.
layers
=
50
depth
=
[
3
,
4
,
6
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
"conv1_1"
)
self
.
conv1_2
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_2"
)
self
.
conv1_3
=
ConvBNLayer
(
num_channels
=
32
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
"conv1_3"
)
self
.
pool2d_max
=
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
AdaptiveAvgPool2d
(
1
)
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
class_dim
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
),
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
if
load_checkpoint
is
not
None
:
model_dict
=
paddle
.
load
(
load_checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load custom checkpoint success"
)
else
:
exe
.
run
(
startup_prog
)
# trainable
for
param
in
context_prog
.
global_block
().
iter_parameters
():
param
.
trainable
=
trainable
return
inputs
,
outputs
,
context_prog
def
save_inference_model
(
self
,
dirname
,
model_filename
=
None
,
params_filename
=
None
,
combined
=
True
):
if
combined
:
model_filename
=
"__model__"
if
not
model_filename
else
model_filename
params_filename
=
"__params__"
if
not
params_filename
else
params_filename
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
program
,
feeded_var_names
,
target_vars
=
fluid
.
io
.
load_inference_model
(
dirname
=
self
.
default_pretrained_model_path
,
executor
=
exe
)
fluid
.
io
.
save_inference_model
(
dirname
=
dirname
,
main_program
=
program
,
executor
=
exe
,
feeded_var_names
=
feeded_var_names
,
target_vars
=
target_vars
,
model_filename
=
model_filename
,
params_filename
=
params_filename
)
checkpoint
=
os
.
path
.
join
(
self
.
directory
,
'resnet50_vd_10w.pdparams'
)
if
not
os
.
path
.
exists
(
checkpoint
):
os
.
system
(
'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/resnet50_vd_10w.pdparams -O '
+
checkpoint
)
model_dict
=
paddle
.
load
(
checkpoint
)[
0
]
self
.
set_dict
(
model_dict
)
print
(
"load pretrained checkpoint success"
)
def
forward
(
self
,
inputs
:
paddle
.
Tensor
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
y
=
self
.
conv1_3
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
block
in
self
.
block_list
:
y
=
block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
paddle
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
return
y
hub_module/modules/image/classification/resnet50_vd_10w/processor.py
已删除
100644 → 0
浏览文件 @
6405d834
# coding=utf-8
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
base64
import
cv2
import
os
import
numpy
as
np
def
base64_to_cv2
(
b64str
):
data
=
base64
.
b64decode
(
b64str
.
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
data
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
data
def
softmax
(
x
):
orig_shape
=
x
.
shape
if
len
(
x
.
shape
)
>
1
:
tmp
=
np
.
max
(
x
,
axis
=
1
)
x
-=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
,
axis
=
1
)
x
/=
tmp
.
reshape
((
x
.
shape
[
0
],
1
))
else
:
tmp
=
np
.
max
(
x
)
x
-=
tmp
x
=
np
.
exp
(
x
)
tmp
=
np
.
sum
(
x
)
x
/=
tmp
return
x
def
postprocess
(
data_out
,
label_list
,
top_k
):
"""
Postprocess output of network, one image at a time.
Args:
data_out (numpy.ndarray): output data of network.
label_list (list): list of label.
top_k (int): Return top k results.
"""
output
=
[]
for
result
in
data_out
:
result_i
=
softmax
(
result
)
output_i
=
{}
indexs
=
np
.
argsort
(
result_i
)[::
-
1
][
0
:
top_k
]
for
index
in
indexs
:
label
=
label_list
[
index
].
split
(
','
)[
0
]
output_i
[
label
]
=
float
(
result_i
[
index
])
output
.
append
(
output_i
)
return
output
hub_module/modules/image/classification/resnet50_vd_10w/resnet_vd.py
已删除
100755 → 0
浏览文件 @
6405d834
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
"ResNet"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
,
"ResNet200_vd"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_3x3
=
False
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_3x3
=
is_3x3
def
net
(
self
,
input
):
is_3x3
=
self
.
is_3x3
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
if
is_3x3
==
False
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
else
:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
,
name
=
'conv1_1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
,
name
=
'conv1_3'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
,
200
]
and
block
==
2
:
if
i
==
0
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"a"
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
if_first
=
block
==
0
,
name
=
conv_name
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
return
pool
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
conv_bn_layer_new
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
1
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
name
,
if_first
=
False
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
if_first
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
self
.
conv_bn_layer_new
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
,
name
,
if_first
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
"_branch2b"
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
if_first
=
if_first
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
ResNet50_vd
():
model
=
ResNet
(
layers
=
50
,
is_3x3
=
True
)
return
model
def
ResNet101_vd
():
model
=
ResNet
(
layers
=
101
,
is_3x3
=
True
)
return
model
def
ResNet152_vd
():
model
=
ResNet
(
layers
=
152
,
is_3x3
=
True
)
return
model
def
ResNet200_vd
():
model
=
ResNet
(
layers
=
200
,
is_3x3
=
True
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录